
Tile/Line Dual Access Cache Memory based on
Hierarchical Z-order Tiling Data Layout

by

BaoKang Wang
(415DB53)

The Division of Systems Engineering,

Graduate School of Engineering, Mie University.

Tsu, Mie

March, 2018

APPROVED BY:

Dr. Toshio Kondo (Chair of Advisory Committee)

Dr. Tetsushi Wakabayashi

Dr. Yoshikatsu Ohta

ABSTRACT

The increasing disparity between the data access speed of cache and process-
ing speeds of processors has recently caused a major bottleneck in achieving high-
performance 2-dimensional (2-D) data processing, such as that in image processing
and scientific computing. However, multi-core and single instruction multiple data
(SIMD) extensions are current technologies that can effectively improve the process-
ing speeds of processors. Even though 2-D data are generally arranged in row-major
layout (C language) or column-major layout (Fortran language) in memory, single-
directional layouts have poor locality for 2-D data access because vertically adjacent
data are stored far apart. As a result, the translation lookaside buffer (TLB) misses
frequently occur and the excessive data transfer problem cannot be avoided by using
conventional caches. Therefore, ineffective non-major-directional data access to cache
memory has become a bottleneck for efficient 2-D data processing by utilizing extended
SIMD instructions.

This thesis proposes a cache memory with both tile (column and row directions) and
line (row direction) accessibility for efficient 2-D data processing to solve this problem.
The proposed cache is based on a 4-level Z-order tiling data layout and a multi-bank
memory array structure that supports skewed array storage schemes. 2-D data access
to the proposed cache memory is enabled via a hardware-based multi-mode address
translation unit that eliminates the overhead of software-based address calculation and
transforms the conventional raster layout into the 4-level Z-order tiling data layout.
The proposed layout maximizes utilization of the 2-D reference locality, minimizes the
TLB misses, and reduces the amount of excessive data transfer by dividing the data
into hierarchical 3-level tiles (the 1st-level is a 2048×2048 byte-sized large tile, the
2nd-level is a 64×64 byte-sized medium tile and the 3rd-level is an 8×8 byte-sized
tile), each of which is arranged in raster scan order at the same level.

In addition, the author has added a dual 1-D/2-D data access mode to the proposed
cache. The proposed cache can appropriately switch a 2-D access mode for the proposed
tile and line access to a 1-D data access mode for conventional raster line access.
Therefore, the proposed cache can be used for both 1-D and 2-D data processing. The
author proposes a method of reducing tag memory to replace multiple tiles with an
aligned tile set (RATS) in the cache to reduce the hardware overhead of the proposed
cache. The RATS method greatly reduces the entire hardware scale and simplifies the
cache architecture, even though it provides almost the same cache performance.

The author evaluated the proposed cache in two ways: First, to verify the feasibility
of the proposed cache, a large-scale integration (LSI) layout of a SIMD-based general
purpose-oriented datapath that embedded the proposed cache was designed in a 2.5×5
mm2 area using 0.18 µm complementary metal oxide semiconductor (CMOS) technol-
ogy. The read latency was limited to 3 clock cycles under a 3.9 ns clock period (250
MHz), which was the same as that for the conventional cache memory of an Intel or
advanced reduced instruction set computer (RISC) machine (ARM) high-performance

processor. The entire hardware overhead of the proposed RATS-cache was reduced to
only 7% of that required for a conventional cache by using the RATS method.

In addition, the author evaluated the performance of the proposed cache for matrix
multiplication (MM) and LU decomposition (LUD) in terms of the number of L1, L2
cache and TLB misses and the execution time (cycles). The results from simulation
for the proposed cache indicated a considerable reduction in L1 and L2 cache conflict
misses compared with a conventional cache in power-of-two matrix size due to the
column-directional address stride being sufficiently smaller than the page size. In
addition, the proposed cache significantly improved the TLB performance compared
to a conventional cache with all matrix sizes. Therefore, the proposed cache provided
efficient column-directional parallel access that was the same as row directional parallel
access so that it enabled efficient SIMD operation that required no transposition in
MM. The proposed cache could provide almost the same performance as LUD for
the column-major based LUD program as that for the row-major based LUD program.
These results indicated that the proposed cache did not restrict our freedom in selecting
either row- or column-major order coding. In addition, the results from simulation
also revealed that the RATS cache and the Non-RATS cache (the proposed cache did
not adopt the RATS method) provided almost the same performance, which was not
inferior to that of the conventional cache.

Finally, the number of parallel load instructions required for parallel column- and
row-directional access was reduced to about one fourth of that required for conventional
raster line access for MM. Since the performance of the proposed cache was also affected
by the performance of L1 and L2 caches, the execution time for parallel load instruction
was about one third of that required for conventional load instruction. The proposed
cache with tile/line accessibility further improved the performance of 2-D applications
by using SIMD instructions.

3

Contents

1 Introduction 1

1.1 Background and related work . 1

1.2 Approach and main contributions of this thesis 3

1.3 Thesis Organization . 6

2 Current insufficient utilization of 2-D spatial reference locality 7

2.1 Conventional raster layout . 7

2.1.1 Layout features . 7

2.1.2 Difficulty of the 2-D locality utilization 8

2.1.2.1 Problems with TLB misses for large-sized 2-D data access 9

2.1.2.2 Excessive data transfer problem 10

2.1.2.3 Parallel data access capability in the major direction . 11

2.2 Conventional methods of improvement 12

2.2.1 Usage of transposition . 12

2.2.2 Cache tiling . 14

2.2.2.1 Software-based cache tiling method 15

2.2.2.2 Hardware-based cache tiling method 16

2.2.2.3 Problem of the cache tiling method 18

2.2.3 Hardware prefetching . 19

3 Current SIMD instruction set extensions 21

3.1 SIMD parallel processing . 21

3.2 Gather/scatter operations . 23

3.2.1 Non-contiguous memory access by gather and scatter operations 23

3.3 Efficient transposition . 24

3.3.1 Transposition routine with Intel AVX2 24

3.4 Non-major-directional operation in the Intel library 26

4 Skewed storage scheme 28

4.1 Parallel row- and column-directional access by using skewed storage scheme 28

4.1.1 Skewed storage scheme . 28

i

4.1.2 Parallel non-major-directional tile access by using skewed storage

scheme . 30

5 Hierarchical tiling data layout 34

5.1 Effectiveness of hierarchical tiling data layout 34

5.1.1 Block data layout . 34

5.1.2 Z-Morton layout . 35

5.1.3 Morton hybrid layout . 38

5.2 Problem of the hierarchical tiling data layout 40

6 Proposed cache memory with tile and line accessibility 42

6.1 Proposed Multi-level Z-order tiling data layout 42

6.1.1 4-level Z-order tiling data layout 42

6.1.2 Cache-based hybrid Z-ordering layout 44

6.1.2.1 Utilization of hardware prefetching 45

6.1.2.2 Strassen algorithm for MM 48

6.2 The proposed cache architecture . 49

6.2.1 Parallel tile and line accessibility 50

6.2.2 Improvement of data transfer speed 51

6.2.3 Improvement of degree of coding flexibility for 2-D program . . 52

6.2.4 Load instructions reduction by using SIMD extensions 52

6.3 Parallel tile and line access mechanism 52

6.4 Hardware-based address bit-order interchange unit for raster scan order

to the 4-level Z-order tiling space . 55

6.5 Tag memory reduction method . 58

6.6 Unaligned tile access in the column direction 60

6.7 Dual data access mode for 1-D/2-D data access 61

7 Hardware scale optimization of the proposed cache 62

7.1 RATS-tag memory reduction method 62

7.1.1 RATS-T access mode . 64

7.1.2 RATS-S access mode . 64

ii

7.2 The proposed RATS-cache architecture 65

8 Evaluation 66

8.1 Hardware scale evaluation . 66

8.1.1 Implementation . 66

8.1.2 Hardware scale overhead and speed performance evaluation . . . 66

8.1.3 Critical path for loading . 68

8.2 Performance evaluation . 70

8.2.1 Execution environment . 71

8.2.2 RATS-T access evaluation . 73

8.2.2.1 Performance of multi-level cache and TLB 73

8.2.2.2 Execution time evaluation 76

8.2.3 RATS-S access evaluation . 79

8.2.3.1 Performance of multi-level cache and TLB 79

8.2.3.2 Execution time evaluation 82

8.2.4 Parallel tile/line access evaluation 83

8.2.4.1 Evaluation of reduction to load instructions 83

8.2.4.2 Execution time evaluation 84

9 Conclusion 87

A Appendix 90

A.1 Number of cycles required for data loadings 90

References 93

iii

List of Figures

2.1 Raster layout: row-major order with 8×8 sized matrix. 8

2.2 Raster layout: column-major order with 8×8 sized matrix. 8

2.3 Excessive data transfer in raster data access. 11

2.4 Mapping a 2-D matrix to row-major layout. 12

2.5 Transpose a row-major order based 8×8 matrix to a column-major order

based 8×8 matrix. 13

2.6 Excessive data transfer in raster data access. 14

2.7 Tiled and untiled MM. 15

2.8 Software-based tiling. 16

2.9 Hardware-based tiling. 17

3.10 SIMD addition: C = A + B. 22

3.11 Gather operation: VGATHERDPS instruction. 24

3.12 Elements permutation in YMM register: VPERM instruction. 25

3.13 4×4 transposition processing. 25

4.14 4-bank structured memory. 29

4.15 4-bank structured memory that supports skewed storage scheme. 29

4.16 Block-offset mapping. 30

4.17 8×4 byte-sized tile access by using skewed storage scheme. 32

4.18 4×8 byte-sized tile access by using skewed storage scheme. 32

4.19 Block-offset mapping for a large-sized 2-D data access. 33

5.20 Block data layout, using 4×4 tile. 35

5.21 Z-Morton layout. 36

5.22 Z-Morton layout: 16×16 matrix. 39

5.23 Morton hybrid layout: 16×16 matrix. 40

6.24 4-level Z-order tiling layout. 43

6.25 Medium tile and tile store data in raster scan order. 43

6.26 Cache-based hybrid Z-ordering layout (Medium tile and tile store data

in raster scan order). 44

6.27 Strassen algorithm performs a single level recursion 2×2 tile. 48

6.28 Block diagram of the proposed cache memory. 50

iv

6.29 Tile data access. 51

6.30 Conventional storage scheme. 53

6.31 Parallel tile and line access scheme (line access). 54

6.32 Parallel tile and line access scheme (tile access). 54

6.33 Various sizes of 2-D data allocation in the 4-level Z-order tiling layout. 56

6.34 Memory allocation for 4-level Z-order tiling space. 57

6.35 The address bit interchange. 57

6.36 Address translation circuit. 58

6.37 Each tag is added to each constituent subline of a skewed array com-

posing an aligned tile. 59

6.38 Each tag is added to each aligned tile. 59

6.39 Unaligned tile access scheme. 60

6.40 Proposed cache for both 1-D and 2-D data processing. 61

7.41 Aligned tile set in each medium tile. 63

7.42 Two-bank tag memory structure. 64

7.43 Block diagram of the proposed RATS-cache memory. 65

8.44 Chip layout. 68

8.45 Critical path for loading of the proposed 2-way/8-way set associative

cache. 70

8.46 RATS-T access, N×N MM: Number of DL1 cache misses. 73

8.47 RATS-T access, N×N LUD: Number of DL1 cache misses. 75

8.48 RATS-T access, N×N MM: Number of UL2 cache misses. 76

8.49 RATS-T access, N×N LUD: Number of UL2 cache misses. 76

8.50 RATS-T access, N×N MM: Number of TLB misses. 77

8.51 RATS-T access, N×N LUD: Number of TLB misses. 77

8.52 RATS-T access, overall speedup for MM. 78

8.53 RATS-T access, overall speedup for LUD. 78

8.54 RATS-S access, N×N MM: Number of DL1 cache misses. 79

8.55 RATS-S access, N×N LUD: Number of DL1 cache misses. 79

8.56 RATS-S access, N×N MM: Number of UL2 cache misses. 80

8.57 RATS-S access, N×N LUD: Number of UL2 cache misses. 80

v

8.58 RATS-S access, N×N MM: Number of TLB misses. 81

8.59 RATS-S access, N×N LUD: Number of TLB misses. 81

8.60 RATS-S access, overall speedup for MM. 82

8.61 RATS-S access, overall speedup for LUD. 82

8.62 Number of load instruction reduction. 84

1.63 Evaluation results in the HorseRace sequence. 91

1.64 Evaluation results in the Bronze with credits sequence. 91

vi

List of Tables

2.1 Throughout count breakdown of DCT in videolan x264. 14

4.2 Access count reduction rate. 31

5.3 Theoretical cache and TLB hit rate for row-directional access of a large-

sized 2-D array of double-precision floating-point operations. We do not

consider the additional conflict misses due to 2-D data locality. 37

5.4 Theoretical cache and TLB hit rate for column-directional access of a

large-sized 2-D array of double-precision floating-point operations. We

do not consider the additional conflict misses due to 2-D data locality. . 37

6.5 Theoretical cache and TLB hit rate for MMwith double-precision floating-

point operations. The author does not consider the additional conflict

misses due to 2-D data locality. 47

6.6 Theoretical cache and TLB hit rate for MMwith single-precision floating-

point operations. The author does not consider the additional conflict

misses due to 2-D data locality. 47

6.7 Strassen algorithm. 48

8.8 Chip specification. 67

8.9 Cache speed. 67

8.10 Hardware scale for the 2-way set associative cache (Number of NAND

gate equivalents). 69

8.11 Hardware scale for the 8-way set associative cache (Number of NAND

gate equivalents). 69

8.12 Processor and memory hierarchy configuration. 72

8.13 DL1 Cache miss rate for MM. 73

8.14 DL1 Cache miss rate for LUD. 74

8.15 The number of DL1 and UL2 cache misses for parallel tile and line access. 85

8.16 Execution time evaluation. 86

1.17 Condition of the simulation. 90

vii

1 Introduction

1.1 Background and related work

Although computer performance has been considerably improving year by year, the

demand for efficient 2-D data processing, such as that in numerical calculations, image

processing, object recognition, and video coding, continues to increase. Improvements

to processor and memory access speeds are important keys to improve the performance

of 2-D data processing. Multi-core and single instruction multiple data (SIMD) exten-

sions are current technologies that can effectively improve processing speeds [1] [2].

However, sufficiently efficient data access for parallel processing has not yet been ob-

tained because conventional cache memory, which is based on either row- or column-

major data layouts (raster or single-directional layouts), does not enable efficient opera-

tions to spatially reference 2-D data, such as those used in image processing or scientific

computing. For example, conflict misses and translation lookaside buffer (TLB) misses

have frequently occurred in large-scale matrix multiplication (MM) because the cache

memory does not contain all the data needed for the program’s execution or exploit

2-D data locality in the column direction. In addition, the raster layout is inefficient

to access two-dimensionally localized block data in image processing, and the excessive

data transfer problem cannot be avoided [3] [4].

A software-based, single-levels tiling technique (also known as blocking) has been

used to effectively improve 2-D data access capability to solve these problems. This

technique allows the cache to exploit temporal locality; therefore, this tiling technique

can reduce the cache capacity miss rate. However, 2-D data processing by using SIMD

operations is restricted because there is no availability of a column-directional parallel

access function so that performance degradation cannot be avoided if it does not use

manually or ingeniously optimized routines such as the OpenBLAS or the Intel math

kernel library (MKL). Also, the tiling technique does not effectively reduce the number

of TLB misses and the amount of excessive data transfer for two-dimensionally localized

block data access. User-transparent tile-based addressing, on the other hand, which

requires no address translation in the user software, relies on the compiler to restructure

the loop code, which causes additional overhead in the execution time because the cost

1

of tiling address computation cannot be avoided [5] [6] [7].

Hierarchical tile based addressing on the Z-Morton layout [8] is a more effective

technique than conventional single-level tiling in terms of reducing column-directional

conflict misses and TLB misses in the processing of power-of-two sized matrices. The

Z-Morton layout, which is, a potential compromise between row- and column-major

layouts [9] [10] can minimize conflict misses and TLB misses in both row and column

directions and utilize the spatial reference locality, regardless of the data array size.

However, address calculation for the Morton layout is considerably more complex than

that for the row- or column- major layouts, which causes significant processing over-

head. As such, Morton address calculation imposes a software-overhead cost to exploit

the 2-D spatial reference locality benefits of the Z-Morton layout.

Wittenbrink and Somani [11] proposed a hardware approach with three important

advantages over the software approach: 1) the image storing and transfer mechanisms,

such as direct memory access (DMA) or I/O devices, are independent of the tiling

scheme, 2) a small tile can be used to process images of an arbitrary size, and most

importantly, 3) the address translation is transparent to the user software. Although

this approach is highly effective in reducing the execution time, two problems remain

to be solved: 1) each width of the 2-D processing area requires a different address

bit-order interchange and 2) the approach cannot support simultaneous parallel small

tile access.

Although other studies [12] [13] [14] [15] [16] have used the Morton layout to exploit

2-D data locality and reduce conflict misses and TLB misses, these approaches have

increased the cycle time or access latency due to the versatility of Morton-index trans-

lations. In contrast, [17] proposed a hardware-based bit-permuting unit to translate

the raster scan order address to a Z-Morton address that indicated that the hardware-

based method reduced the overhead of Z-Morton address calculation (total number

of instructions) by about 40% compared with that of the software-based method on

a superscalar processor [18]. However, the main focus of this study was not to ob-

tain column-directional parallel access capability but to facilitate the reduction of the

software overhead for Z-Morton address calculation.

The author proposes a new cache memory architecture for one-dimensional and

2

two-dimensional (1-D/2-D) data processing to eliminate these problems and combine

it with a SIMD-based general purpose-oriented datapath [19] [20]. Our method provides

more advanced features of a cache line-sized tile or line accessibility than the previous

hardware and software cache tiling techniques and a user-transparent hybrid Z-order

tile-based address implemented without additional latency.

1.2 Approach and main contributions of this thesis

The 13 most outstanding specific contributions of this thesis are highlighted below:

1. The author proposes a new 8-way set associative cache (32 Kbytes with a 64-

byte cache line) with an 8×8 byte-sized tile and 64-byte-sized line accessibility.

Its parallel aligned/unaligned tile and line access corresponding to parallel data

access in the column and row directions can improve throughput with a low latency

overhead.

2. The tile access corresponding to column-directional parallel data access can elim-

inate the transposition required in matrix calculation, orthogonal transform such

as fourier transform or discrete cosine transform (DCT) and image feature detec-

tion, and it can provide efficient 2-D unit block access for image processing and

video coding, even though its utilization may require significant modifications to

the program code.

3. The author proposes a method of reducing tag memory that replaces multiple tiles

with an aligned tile set (RATS) in the cache to reduce the hardware overhead of

the proposed cache. The RATS method considerably reduces the entire hardware

scale of the proposed cache and simplifies the cache architecture without affecting

cache performance.

4. The proposed cache can minimize TLB misses in both row and column direction

in 2-D processing. As a result, it can minimize the optimization efforts of an

original tiling code in which it is difficult to utilize manually coded libraries such as

OpenBLAS or Intel MKL. In other words, the proposed cache provides a column-

directional parallel access function and allows either row-major based or column-

major based 2-D program code so that it increases the degree of freedom of coding.

3

Therefore, the programmer’s burden of coding to improve processing efficiency can

be reduced by using our proposed cache.

5. The column-directional address stride becomes sufficiently smaller than the 4 Kbytes

page size (virtual memory page size) in the 4-level Z-order tiling layout. This small

stride minimizes the conflict misses and TLB misses in the column-directional ad-

jacent or contiguous access. As a result, the proposed cache can provide efficient

column-directional access as well as row directional access with a minimal hardware

increase so that it enables efficient SIMD operations that require no transposition

in matrix computation.

6. The proposed cache scheme can be freely configured from a direct-mapped cache

to an n-way set associative cache. To the best of my knowledge, the author is

the first to design a high-performance on-chip n-way set associative cache memory

with tile/line accessibility for 2-D data processing and combine the proposed cache

with a general purpose-oriented datapath that supports SIMD extensions. The

author also evaluates three main specifications to demonstrate the feasibility of the

proposed cache: read and write latency, clock period, and hardware scale.

7. The author adds a dual data access mode to the proposed cache memory to support

the conventional raster line access for 1-D data processing. The proposed cache can

appropriately switch a 2-D data access mode for the proposed tile and line access

to a 1-D data access mode for the conventional raster line access.

8. The author proposes a new data layout called the 4-level Z-order tiling layout

based on the conventional Z-Morton layout to maximize the exploitation of 2-D

reference locality, reduce cache misses and TLB misses and reduce the amount of

excessive data transfer. The proposed 4-level Z-order tiling layout divides data into

hierarchical 3-level tiles (1st-level large tiles, 2nd-level medium tiles and 3rd-level

tiles), each of which is arranged in raster scan order at the same level.

9. The author proposes a new data layout called the Cache-based hybrid Z-ordering

layout based on the 4-level Z-order tiling layout and the conventional Z-Morton

layout to efficient exploit hardware prefetching technique. The proposed layout

4

can exploit constant-stride prefetching in both major-directional and non-major

directional access. In addition, combining the Strassen algorithm with the proposed

layout can improve MM performance for any matrix size.

10. The address bit-order interchanger in the proposed cache is performed by hardware

and is transparent to the processor. This address bit-order interchange that cor-

responds to a 64 Kbytes-wide area eliminates the address calculation overhead of

Morton-index conversion for 2-D data access and allows the 4-level Z-order (based

on the Z-Morton layout) curve tiling layout to be accessed as a conventional raster

layout.

11. The author evaluates the performance of the proposed cache for MM and LUD

in terms of the number of L1, L2 cache and TLB misses and the execution time

(cycles). The results obtained from evaluation revealed that the RATS cache and

the Non-RATS cache provide almost the same performance in matrix computation,

which is not inferior to that of the conventional cache.

12. The author evaluates the hardware scale overhead of the RATS cache. Compared

with the conventional cache, the entire hardware scale overhead of the RATS cache

is reduced to only 5% and 7% for an 8-way set associative cache with a 32-byte

cache line for the former and a 64-byte cache line for the latter. The RATS cache

provides almost the same performance as that of the Non-RATS cache although it

require only a minimum addition of hardware for both tile and line accessibility.

13. The author modifies the SimpleScalar simulator and evaluates the performance of

load instruction reduction (SIMD processing) for parallel tile and line access. The

results from evaluation indicated that the number of load instructions for SIMD

processing is reduced to about one fourth of that required for non-SIMD processing.

The execution cycles for SIMD processing is reduced to about one third of those

required for non-SIMD processing due to the effect of L1 and L2 caches misses.

The proposed cache with tile/line accessibility further improves the performance of

2-D applications by using SIMD instructions.

5

1.3 Thesis Organization

The remainder of this paper is organized as follows. Background information related

to the thesis is described in Section 2. This section introduces the conventional raster

layout and cache tiling method. Current SIMD instruction set extensions are described

in Section 3. This section introduces the current SIMD architecture, the Intel MK-

L/IPP library and non-contiguous memory access operation by using gather/scatter

instructions. Skewed storage scheme is described in Section 4. This section introduces

parallel data access in the row and column direction can be realized by using multi-bank

memory structure that supports skewed storage scheme. Section 5 compares various

hierarchical tiling data layouts such as the single-level tiling layout, multi-level Z-order

tiling layout, Z-Morton layout and Morton hybrid layout. The proposed 4-level Z-order

tiling data layout, the proposed cache architecture design, address translation unit and

parallel tile/line access scheme are presented in Section 6. The RATS tag memory

reduction method is presented in Section 7. The design result of the proposed cache

and the performance evaluation results are presented in Section 8. Finally, the author

provides a discussion and conclusion in Section 9.

6

2 Current insufficient utilization of 2-D spatial ref-

erence locality

2.1 Conventional raster layout

Matrices in most language implementations are usually stored in contiguous memory

locations using either row-major or column-major raster layout. Figures 2.1 and 2.2

outline the configurations for row-major and column-major layouts. As shown in Figure

2.1, the row-major layout stores the first row of a 1-D matrix in contiguous memory, and

then the second, etc. As shown in Figure 2.2, the column-major layout stores the first

column of a 1-D matrix in contiguous memory, and then the second, etc. Therefore,

consecutive elements of the rows of the matrix are stored in contiguous memory in the

row-major layout and consecutive elements of the columns of the matrix are stored

in contiguous memory in column-major layout. The raster layout is also called 1-D

contiguous order layout. The row-major layout is by far the most commonly used

today as it has been adopted in C language.

2.1.1 Layout features

There are three main advantages of the raster layout. (1) It is easy to generate the

address of each element since the address linearly increases in the major, i.e, either

in the row or column direction. (2) If the accessed data are stored in the same page,

they do not occur TLB misses. If the accessed data are stored in the same cache

line, they can be loaded onto the processor in one cycle. Therefore, all the contiguous

elements linearly arranged in the raster layout can be fetched very quickly in the major

direction. Parallel access by using the cache line in the major direction can be achieved.

However, the raster layout provides poor access capability for 2-D arrays unless the

data are accessed in the major direction (for a row-major layout, the row direction is

the major direction and the column direction is a non-major direction). (3) This is

efficient for 1-D data processing because the range of the same tag values maximizes

in the major direction.

However, efficient access is only provided in the major direction because the ele-

ments for parallel access must be stored in almost the same cache line or the same

7

1 2 3 40 5 6 7

9 10 11 128 13 14 15

17 18 19 2016 21 22 23

25 26 27 2824 29 30 31

33 34 35 3632 37 38 39

41 42 43 4440 45 46 47

49 50 51 5248 53 54 55

57 58 59 6056 61 62 63

Figure 2.1: Raster layout: row-major order with 8×8 sized matrix.

8 16 24 320 40 48 56

9 17 25 331 41 49 57

10 18 26 342 42 50 58

11 19 27 353 43 51 59

12 20 28 364 44 52 60

13 21 29 375 45 53 61

14 22 30 386 46 54 62

15 23 31 397 47 55 63

Figure 2.2: Raster layout: column-major order with 8×8 sized matrix.

page. As a result, the raster layout has poor accessibility in the non-major direction

for large-sized 2-D data. Non-major-directional contiguous access causes frequent TLB

misses if the stride length is greater than the page size of virtual memory so that the

non-major directional contiguous access exceeds the TLB size. Consequently, the raster

layout is inefficient for 2-D data access.

2.1.2 Difficulty of the 2-D locality utilization

This raster layout does not lead to good access efficiency for 2-D data without a skillful

or tricky processing algorithm. This is because the raster layout imposes stride ad-

dressing on non-major directional contiguous elements so that it makes parallel data

8

access difficult in the non-major direction and it can only provide efficient access ca-

pability in the major direction. In addition, the raster layout causes problem with

frequent TLB misses in large-sized 2-D data access due to the small TLB sizes such as

those with 64 entries.

2.1.2.1 Problems with TLB misses for large-sized 2-D data access

The processor generates logical addresses that just become virtual addresses. In

addition, physical addresses are used to access memory. TLB is a cache of memory that

stores recent translations of virtual to physical addresses for faster retrieval. Therefore,

TLB only stores the most recently accessed page table entries. A TLB miss occurs when

it does not contain the tag entry for translating a virtual address to a physical address.

If there is a TLB miss, the translation proceeds by looking up the page table in a

process. A page fault occurs if the processor accesses data that cannot be found either

in the TLB or in the main memory.

The raster layout causes frequent TLB misses for large-sized 2-D data access due

to the small TLB size. The major-directional small address stride for 2-D data access

is mostly not over the page size whereas the non-major-directional large address stride

(stride length is greater than page size) always exceeds the page size and it often causes

TLB misses. Therefore, non-major directional access causes frequent TLB misses.

Consider large scale matrices storing elements in a row-major layout for MM. Column-

directional access causes frequent TLB misses because the address of elements in each

column are mapped to a different page.

Listing 1: The basic MM version (ijk).

1 int main()

2 {

3 for(i = 0; i < 32; i++)

4 for(j = 0; j < 32; j++)

5 for(k = 0; k < 32; k++)

6 C[i][j]+= A[i][k] * B[k][j];

7 }

9

Suppose that there are three matrices, A, B, and C, each of which is a 32×32

matrix composed of double precision elements and laid out in memory in row-major

order and that their beginning is aligned to a page boundary (e.g., A[0][0] is located

at the beginning of a page and B[0][0] is located on another page.). Consider the basic

MM algorithm in ijk order as shown in Listing 1.

Assume the page size is 8 Kbytes and 256 Kbytes of physical addresses are covered

by a 32 entry TLB. Each matrix needs 25×25×23 = 8 Kbytes. The column-directional

elements of matrix B accessed from the different rows are in the same page in the k

loop scans, so that a TLB miss is caused in the element access. Consider the matrix

size in Listing 1 is N×N where N is larger than the page size. The memory pages are

accessed consecutively in the row-directional matrix A access. As a result, TLB misses

caused by row-directional access are equal to N2/P (P is the page size). In contrast, the

number of the TLB misses in the column-directional matrix B access is almost equal

to N since accessing a different row causes a TLB miss since each row is assigned to

N different pages. Consequently, the more matrix size sharply increases, and the TLB

misses increase since the row-major layout cannot exploit the 2-D reference locality in

the column direction.

2.1.2.2 Excessive data transfer problem

The raster layout also cannot provide efficient access to the 2-D localized array

data because it only provides the data transmission function by cache line in the major

direction. For example, in block matching for motion search or image recognition, the

typical cache line size from 32 to 256 bytes is too long to load a block equal to or less

than the conventional 16×16 pixel block so that more than half of the accessed cache

line data is unused. As shown in Figure 2.3, a 32 byte cache line contains a number of

data unnecessary for the 16×16 pixel macroblock access. If the required data are across

the two adjacent cache lines, 64×16 pixel data transmission is required nevertheless

the 48×16 pixel of the transmitted data may be unused. This inefficient raster data

access frequently occur in the feature detection of the motion recognition.

10

32byte 32byte

32byte 32byte

Required data Unnecessary data

Worst Case

Best Case

4x4pixel

Cache line

Figure 2.3: Excessive data transfer in raster data access.

2.1.2.3 Parallel data access capability in the major direction

The elements of each column in row-major layout are non-contiguous in memory

even though the elements of each row are contiguous in memory. Therefore, the row-

major layout only provides row-directional parallel access capability.

Figure 2.4 show that an 8×8 matrix is stored in row-major layout. The processor

contiguously accesses the elements of the matrix in the row direction. Once the start

address of a row is obtained, the contiguously accessed elements in the row direction

can be fetched very quickly because they are almost in the same cache line or in the

same page. However, the processor cannot parallel access elements of the matrix in

the column direction since the address stride between adjacent elements in the column

direction is determined by the 2-D data width. Therefore, the accessed elements may

be stored in the same memory bank and cannot be read out in parallel even if the

cache memory is composed of a multi-bank structure. Consequently, only part of the

data can be read out in parallel.

11

0,1 0,2 0,3 0,40,0 0,5 0,6 0,7

1,1 1,2 1,3 1,41,0 1,5 1,6 1,7

2,1 2,2 2,3 2,42,0 2,5 2,6 2,7

3,1 3,2 3,3 3,43,0 3,5 3,6 3,7

4,1 4,2 4,3 4,44,0 4,5 4,6 4,7

5,1 5,2 5,3 5,45,0 5,5 5,6 5,7

6,1 6,2 6,3 6,46,0 6,5 6,6 6,7

7,1 7,2 7,3 7,47,0 7,5 7,6 7,7

Figure 2.4: Mapping a 2-D matrix to row-major layout.

2.2 Conventional methods of improvement

2.2.1 Usage of transposition

Since elements in the non-major direction in raster layout are stored in non-contiguous

locations in memory, non-major-directional contiguous access may cause significant

performance degradation. Transposition of the turning row (column) into the column

(row) has been used to solve this ineffective data access problem. For example, let us

consider that the matrix in Figure 2.4 stores elements in row-major layout. Transposi-

tion can be used to enable the column data in Figure 2.5 to be contiguously accessed.

Transposition is required for 2-D data applications, such as matrix calculation,

fast fourier transform (FFT), DCT or inverse discrete cosine transform (IDCT). Here,

DCT is often used in image compression and video encoding. DCT in video encoding

requires the second largest amount of operation and occupies about 10 to 20% of the

total amount of encoding operations. Generally, N×N 2-D DCT consists of horizontal

1-D DCT and vertical 1-D DCT computing. The horizontal 1-D DCT processes data in

the row direction while the vertical 1-D DCT processes data in the column direction.

Horizontal 1-D DCT is simply performed with high processing efficiency since it is

composed of 1-D operations in the row major layout. However, vertical 1-D DCT

suffers from the high processing load of prior transposition that is required to match

its column-directional operation to the row-major layout for efficient 1-D operation.

12

1,0 2,0 3,0 4,00,0 5,0 6,0 7,0

1,1 2,1 3,1 4,10,1 5,1 6,1 7,1

1,2 2,2 3,2 4,20,2 5,2 6,2 7,2

1,3 2,3 3,3 4,30,3 5,3 6,3 7,3

1,4 2,4 3,4 4,40,4 5,4 6,4 7,4

1,5 2,5 3,5 4,50,5 5,5 6,5 7,5

1,6 2,6 3,6 4,60,6 5,6 6,6 7,6

1,7 2,7 3,7 4,70,7 5,7 6,7 7,7

Figure 2.5: Transpose a row-major order based 8×8 matrix to a column-major order
based 8×8 matrix.

The author has analyzed VideoLANx264, which is the most popular open source

encoder software for H.264 [21], to speed-up the 2-D DCT. This VideoLANx264 ob-

tains a practical processing speed by utilizing SIMD instructions such as multimedia

extensions (MMX), streaming SIMD extensions (SSE) and advanced vector extensions

(AVX). The author estimates the throughput of the x264 DCT function with different

block sizes by referring to x86 and x64 instruction throughput [22]. The estimated re-

sults are summarized in Table 2.1. The number of executed transpose operation cycles

is as many as about 25-30% of the DCT processing cycles.

As a result, 2-D DCT processing can be executed without inefficient data access

in the column direction by utilizing transpose operation. However, the transpose op-

eration is so complicated for conventional SIMD instructions that it slows down the

execution time together with frequent TLB miss occurrences due to the long address

stride in the column direction. As can be seen from Figure 2.6, the basic transpose

operation used in VideoLANx264 is performed by using SIMD instructions. There are

13 instructions for each 4×4 transpose matrix. Eight of the instructions are unpack

instructions, and the rest are swap instructions. As a result, it is necessary to elim-

inate the overhead caused by the transpose operation to improve the performance of

2-D applications.

13

Table 2.1: Throughout count breakdown of DCT in videolan x264.

Block Memory 1-D Transpose 1-D Others Total SIMD

size Access DCT DCT Extension

DCT4×4DC(dct4x4dc function)

4×4 6 9 13 9 4.5 41.5 AVX

DCT4×4residual(sub<block size> dctfunction)

4×4 10.5 9 13 9 8 49.5 AVX

8×8 8 9 18 9 28.75 72.75 AVX2

16×16 48 36 72 36 53.5 245.5 AVX2

X11 X01 X10 X00
X13 X03 X12 X02
X31 X21 X30 X20
X33 X23 X32 X22

punpckldq
punpckhdq
punpckldq
punpchldq

punpcklqdq
punpckhqdq
punpcklqdq
punpchlqdq

X30 X20 X10 X00
X32 X22 X12 X02
X31 X21 X11 X01
X33 X23 X13 X03

* * X1 X0 X3 X2
Y3 Y2

punpckldq xmm0,xmm1 punpckhdq xmm0,xmm1

* *
* *

xmm0
xmm1

Y3 X3 Y2 X2Y1 X1 Y0 X0

* * Y1 Y0

Figure 2.6: Excessive data transfer in raster data access.

2.2.2 Cache tiling

Single-level tiling technique (known as blocking) in the raster layout and hierarchical

tiling data layout have been used to effectively improve 2-D data access capability on

both hardware and software levels. Tiling is a widely used loop iteration reordering

technique to improve 2-D reference locality by enhancing the reuse of data in the cache

14

without changing the processing order of the raster layout [23]. On the other hand,

hierarchical tiling data layout divides the raster layout into hierarchical n-level tile,

each of which is arranged in raster scan order. It improves 2-D reference locality and

TLB performance.

Conventional untiled MM

Tiled MM

N = matrix_size

N = matrix_size T = tile size

for(i = 0; i < N; i++)
 for(j = 0; j < N; j++)
 for(k = 0; k < N; k++)
 C[i][j] += A[i][k] * B[k][j];

for(ii = 0; ii < N; ii+=T)
 for(jj = 0; jj < N; jj+=T)
 for(kk = 0; kk < N; kk+=T)
 for(i = ii; i < ii + T; i++)
 for(j = jj; j < jj + T; j++)
 for(k = kk; k < kk + T; k++)
 C[i][j] += A[i][k] * B[k][j];

(a)

(b)

C A B

C A B

N

T T

N

Figure 2.7: Tiled and untiled MM.

Figure 2.7 shows an example of a conventional untiled MM code and a tiled MM

code (tiling method). For conventional untiled MM code, the capacity misses will occur

frequently if matrix size N is larger than cache size. Tiling technique improves cache

performance by dividing the N×N matrix into sufficiently small size of T×T. T×T

sized sub matrix are small and can be fit in the cache. Therefore, tiling reduces the

capacity misses efficiently. There are two kinds of tiling method: software-based tiling

and hardware-based tiling.

2.2.2.1 Software-based cache tiling method

Software-based tiling is a compiler optimization technique attempting to divide a

loop’s iteration space into multiple tiles, so as to ensure that data used in a loop stays

in the cache until it is reused. The division of loop iteration space leads to division of

15

a large-sized matrix into smaller tiles, thus fitting accessed matrix elements into cache

size, reducing cache misses. As shown in Figure 2.8, 2-D data in memory are divided

into equal sized multiple tiles. All tiles are arranged in row-major order in memory.

The tile size is equal to cache size to minimize the capacity misses.

Unaligned data access

Processor

Address

0
1
2
3

N-1

N+0
N+1
N+2
N+3

2N-1

Tile

2N+0
2N+1
2N+2
2N+3

3N-1

Tile Tile Tile

TileTileTileTile

Column-directional access

Figure 2.8: Software-based tiling.

However, software-based tiling containing no address translation steps in the user

software, depend on the compiler to insert additional translation steps so that it suffers

from additional overhead executing the translation steps. There are several software-

based techniques that can reduce the tiling address calculation overhead. However,

the address calculation overhead still cannot be sufficiently decreased because the

address translation requires judgment of each tile boundary. In addition, unaligned

row-directional access is difficult realized due to non-contiguous addresses between the

row-directionally adjacent tiles are non-contiguous.

2.2.2.2 Hardware-based cache tiling method

To reduce the address calculation overhead of the software-based tiling, a hardware-

based cache tiling structure for morphological image processing was proposed by Wit-

16

tenbrink and Somani. They showed that the hardware-based tiling approach has three

important advantages over the software approach: 1) The image storing and transfer

mechanisms, such as direct memory access (DMA) or I/O devices, are independent of

the tiling scheme. 2) A small tile can be used to process images of arbitrary size, and,

most importantly, 3) The address translation is transparent to the user software. These

advantages are based on the address translation taking place in hardware, and not in

software. As shown in Figure 2.9, by address bit-order interchange, the hardware-based

address translation unit translates a raster address (logic address) from an external pro-

cessor into a tiling address (virtual address) to access data in memory. At a result, the

address bit-order interchange eliminates the tiling address calculation overhead and

allow the tiling data of virtual address space to be accessed as conventional raster data

of logic address space.

Address translation unit

Raster address

Processor

0
1
2
3

N-1

N+0
N+1
N+2
N+3

2N-1

Tile

2N+0
2N+1
2N+2
2N+3

3N-1

Tile Tile Tile

TileTileTileTile

Unaligned data access

Column-directional access

Tiling address

Figure 2.9: Hardware-based tiling.

Compared with the software-based tiling, unaligned row-directional access can be

easily realized because the address translation is transparent to the user software. How-

17

ever, this conventional address translation unit has a drawback, that is each width of

the 2-D processing area requires a different address bit-order interchange. For appli-

cations such as MM, if the width of the 2-D processing area is not fixed, a different

address bit-order interchange is required for the width when the matrix size changes.

For example, if the matrix size is 128, the width of the 2-D processing area is set at

128. This complex address translation can avoid mapping the waste space of the 2-D

data processing area. However, it increases hardware scale of the address translation

and may cause a clock-cycle constraint problem.

2.2.2.3 Problem of the cache tiling method

Software-based tiling and hardware-based tiling method improve the 2-D reference

locality and reduce the cache capacity misses efficiently. However, there are several

problems remain to be solved:

• It cannot support parallel aligned/unaligned data access in both row and column

direction.

• Conventional tiling only provides a major-directional access capability. 2-D data

processing by SIMD operations is restricted by no availability of non-major-

directional parallel access function so that it cannot avoid performance degra-

dation caused by the ineffective non-major-directional access. In addition, the

transposition processing required in such as DCT or FFT cannot be eliminated.

Transpose operation causes a significant processing overhead.

• Conventional tiling improves the 2-D reference locality and reduce capacity misses

efficiently. However, it is inefficient for reducing TLB misses because the non-

major directional access causes frequent TLB misses for large-sized 2-D data

access.

• For conventional hardware-based tiling, each width of the 2-D processing area

requires a different address bit-order interchange. This complex address trans-

lation not only increases the hardware scale of address translation and but also

may cause a clock-cycle constraint problem.

18

• Conventional tiling cannot support simultaneous parallel small tile access. As

a result, it cannot provide efficient 2-D unit block access so that excessive data

transfer problem remains to be solved for image processing and video coding.

2.2.3 Hardware prefetching

In addition to the previously discussed method of cache tiling, many modern processors

now uses hardware prefetching techniques to improve the performance of execution of

applications [24]. Hardware prefetching is a technique used by processors that predicts

soon-to-be used instructions or data and loads them from their original low-speed main

memory into the high-speed cache memory before they are accessed. Prefetching has

been used as an effective technique to improve the cache behavior of conventional raster

layout by reducing memory access latency.

Hardware prefetching keeps track of memory access patterns, and fetches cache lines

that may be accessed based on the memory access pattern in the future. There are

several kinds of hardware prefetching methods. A commonly used method is sequential

unit-stride prefetching, where cache lines are accessed with stride of one. For example,

if the processor contiguously accesses the cache lines of A, A+1 and A+2, the prefetcher

can predict that A+3 will be accessed next, and starts fetching the cache line of A+3.

Listing 2: The basic MM version (ikj).

1 int main()

2 {

3 for(i = 0; i < N; i++)

4 for(k = 0; k < N; k++)

5 for(j = 0; j < N; j++)

6 C[i][j]+= A[i][k] * B[k][j];

7 }

Another commonly used method of hardware prefetching is called constant-stride

prefetching, which is similar to sequential unit-stride prefetching, but with variable

access stride (not always + 1). For example, if the processor contiguously accesses

the cache lines of A, A+100 and A+200, the constant-stride prefetcher can detect

19

the memory access pattern and start fetching the cache line of A+300. Consider the

MM given in Listing 2. All arrays in Listing 2 can be prefetched by using sequential

unit-stride prefetching, because all of them are accessed in the major direction of the

row-major layout.

There are significant cases where sequential unit-stride prefetching cannot be used.

Consider the MM given in Listing 3. Array A[i][k] can be prefetched in the innermost

loop by using the sequential unit-stride prefetch because the sequential accesses in the

row direction fits into the sequential unit-stride pattern. However, array B[k][j] cannot

be prefetched by using the sequential unit-stride prefetch because the sequential access

of array B[k][i] is oriented in the non-major column direction. The access pattern would

be B, B+N, B+2N, and so on, which cannot be detected by the sequential unit-stride

prefetcher.

Listing 3: The basic MM version (ijk).

1 int main()

2 {

3 for(i = 0; i < N; i++)

4 for(j = 0; j < N; j++)

5 for(k = 0; k < N; k++)

6 C[i][j]+= A[i][k] * B[k][j];

7 }

There have been some recent architectures that can detect constant-stride accesses,

which would enable all the arrays in the MM prefetcher to operate well. However,

the recent Intel processor series, having constant-stride hardware prefetchers, cannot

perform prefetching if the stride crosses 4 KB page boundaries [25]. Because of this

constraint, constant-stride prefetchers in Intel processors cannot operate any better

than unit-stride prefetchers if problem instances are too large, where each row is more

than 4KB (512 doubles) page size.

20

3 Current SIMD instruction set extensions

Although computer performance has been considerably improving year by year, the

demand for efficient 2-D data processing, such as that for numerical calculations, image

processing, object recognition, and video coding, continues to increase. One technique

to solve this problem is the implementation of single instruction stream multiple data

stream (SIMD) instruction set extensions. However, the non-major-directional memory

access has not kept with the parallel operation of SIMD processor extensions so that it

has become a bottleneck for efficient 2-D data processing that utilizes extended SIMD

instructions. Transposition has been used to improve the performance of the non-

major-directional memory access, however, it causes a significant overhead. Therefore,

to improve the performance of 2-D data processing, it is necessary to enable efficient

parallel memory access in the non-major direction as well as eliminate the overhead

caused by the transposition processing.

3.1 SIMD parallel processing

SIMD is a type of parallel processing in which multiple sets of operands may be fetched

to multiple operation units and may be operated upon simultaneously within a single

instruction cycle. The SIMD instruction set extensions have become increasingly more

popular, and have been included in most current computer processors. The SIMD

extensions, such as Intel’s AVX and SSE, can exploit the parallelism operating on

multiple contiguous data at a time in image processing and MM algorithms.

The AVX and SSE instructions allow the hardware to divide a single wide ALU

into multiple parallel smaller ALUs that operate simultaneously. For example, a single

256-bit ALU can be divided into four 64-bit ALUs, eight 32-bit ALUs, sixteen 16-bit

ALUs or thirty two 8-bit ALUs. Therefore, the programmer can use the data transfer

instructions to transfer either four 64-bit data or eight 32-bit data or sixteen 16-bit

data or thirty two 8-bit data.

Figure 3.10 shows an example of a SIMD addition. A single 32-bit ALU is divided

into four 8-bit ALUs. Each individual 8-bit register A is added to each individual 8-

bit register B to form the result in register C. The conventional addition requires four

21

Register A

Register B

Register C

A[3] A[2] A[1] A[0]

B[3] B[2] B[1] B[0]

A[3]+B[3] A[2]+B[2] A[1]+B[1] A[0]+B[0]

31 24 23 16 15 8 7 0

31 24 23 16 15 8 7 0

31 24 23 16 15 8 7 0

+

=

Figure 3.10: SIMD addition: C = A + B.

instructions and four cycles to complete this addition. Compared with the conventional

addition, the SIMD addition only requires one instruction and can be completed in only

one cycle. This is a speedup of four times. In addition, SIMD provides significantly

performance improvement when dealing with matrix in a large loop.

The SIMD extensions are useful technologies that can effectively improve the pro-

cessing speed of 2-D applications. These SIMD instructions are designed to exploit

significant data-level parallelism of raster layout for scientific computing or image pro-

cessing. Contiguous major-directional access of the raster layout makes it possible

to use SIMD instructions that operate on vectors of data. However, the raster layout

does not provide non-major-directional parallel accessibility. Ineffective non-contiguous

memory access has becomes a bottleneck for efficient 2-D data processing. To solve

this problem, current SIMD architecture has added gather/scatter instruction to the

AVX to provide parallel non-major-directional accessibility. By gather/scatter opera-

tions, the processor can load/store multiple non-contiguous elements from/to memory.

However, the TLB misses occur frequently if we use the gather/scatter instructions,

this is because the raster layout cannot exploit the 2-D reference locality [26]. After

all, transposition, which becomes a significant processing load, is commonly used to

minimize the inefficient non-major-directional accesses.

22

3.2 Gather/scatter operations

3.2.1 Non-contiguous memory access by gather and scatter operations

Scientific computing such as matrix calculation, image processing or video encoding

requires non-major-directional memory access. However, the raster layout does not

efficiently correspond to the non-major-directional access leading to non-contiguous

large stride data access. Therefore, some of the latest hardware architecture (such as

Intel Haswell architecture) provide gather and scatter operations for the non-contiguous

data access. The gather and scatter operations are kinds of data parallel operations,

where a number of data are loaded (gathered) from or stored (scattered) to given

locations.

The gather operation can be thought of as an operation of multiple element loads,

where the elements (non-contiguous in memory) are merged into a single vector register.

Another vector register is used to specify the addresses of the multiple elements. The

scatter operation can be thought of as an operation of multiple element stores, where a

single vector register holds the elements (non-contiguous in memory) to be stored, and

another vector register specifies the addresses of the multiple elements for the stores.

The latest Intel AVX/AVX2 supports a gather instruction for a 256-bit (eight 32-bit)

YMM register.

Figure 3.11 shows the VGATHERDPS instruction that loads eight single-precision

floats. Eight non-contiguous elements are loaded from memory and stored in the YMM1

register. The YMM0 register stores the addresses of the eight elements. Scatter oper-

ation, on the other hand, uses eight elements in the YMM1 register and stores them in

memory by using the addresses in the YMM0 register. The processor can load/store

multiple non-contiguous elements from/to memory by these gather/scatter operations.

For example, the Intel Skylake hardware implements a hardware gather instruction

called VGATHER. The processor can parallel load/store multiple non-contiguous el-

ements from a multi-bank memory architecture by using the VGATHER instruction.

However, this non-major-directional access in the raster layout becomes long stride

non-contiguous access so that it frequently causes TLB misses. After all, transposition

is the most efficient way to correspond to the non-major-directional access.

23

Address

Data

YMM0

YMM1

10 42 88 15 122 18 26 30

3 5 12 25 33 17 19 66

0255

Memory

Figure 3.11: Gather operation: VGATHERDPS instruction.

3.3 Efficient transposition

3.3.1 Transposition routine with Intel AVX2

Although transposition minimizes the inefficient non-major-directional access. How-

ever, the overhead caused by transposition is significant. Intel AVX2 adopts a vector

permute instruction (VPERM) to accelerate the speed of conventional transposition

processing, which can take arbitrary bytes from a source register and places them in

any position in a destination register controlled by an index register, as shown in Fig-

ure 3.12. YMM3, YMM2 and YMM1 correspond to the index register, source register

and destination register. The YMM2 register stores the index value. For example,

the zeroth index value in the YMM2 register is zero. Therefore, it stores the zeroth

element in the YMM3 register to the zeroth storage in the YMM1 register. The fifth

index value in the YMM2 register is six. Therefore, it stores the sixth element in the

YMM3 register to the fifth storage in the YMM1 register.

In addition, it is possible to use only four instructions to transpose a 4×4 matrix

by combining the VPERM instruction with the conventional VBLEND and VSHUF

instructions. That significantly reduces the number of instructions required for conven-

24

YMM2Index

YMM3

YMM1

0255

5 4 6 3 3 3 0 0

0.10.20.30.40.50.60.70.8

0.10.10.40.40.7 0.40.6 0.5

Figure 3.12: Elements permutation in YMM register: VPERM instruction.

A B C D

E F G H

I J K L

M N O P

YMM0 = (

)

YMM1 = (

)

A E C G

B F D H

K O I M

L P J N

YMM2 = (

)

YMM3 = (

)

A E I M

B F J N

C G K O

D H L P

YMM0 = (

)

YMM1 = (

)

VPERMPS YMM2, YMM0, ctl1

VPERMPS YMM3, YMM1, ctl2

VBLENDPS YMM0, YMM2,
YMM3, 0xCC

VSHUFPS YMM1, YMM3,
YMM2, 0X4E

Figure 3.13: 4×4 transposition processing.

tional transposition as was explained in Section 2.2.1. Figure 3.13 shows transposition

processing by using a combination of VPERM, VBLEND and VSHUF instructions.

The 4×4 transposition can be completed by only using four instructions. Although

25

Intel AVX2 improves the speed of conventional transposition processing, the overhead

caused by the transposition is still not eliminated. The TLB misses problem remains

to be solved for large-sized 2-D data access.

3.4 Non-major-directional operation in the Intel library

It is important to exploit SIMD instructions and decrease the ineffective non-major-

directional access to improve the performance of 2-D applications. Intel developed

a technique of compiler optimization, called Intel MKL library to accelerate math

processing routines to improve the performance of 2-D applications when running on

system equipped with an Intel high-performance processor. The Intel MKL library con-

tains numerous functions, such as basic linear algebra subprograms (BLAS), a linear

algebra package (LAPACK), FFT and vector math. This library performs efficient ma-

trix transposition and greatly improves the performance of the non-major-directional

access. For instance, Intel MKL library includes out-of-place and in-place transposition

routines. Moreover, sgemm and dgemm are used to perform MM. Sgemm and dgemm

include a parameter to specify that the matrices are transposed before an operation is

executed. These transposition routines improve the performance of the conventional

transposition. In addition, BLAS is widely used to improve the performance of sci-

entific computing, such as MM [27] [28] [29]. The BLAS provides standard building

blocks for performing basic vector and matrix operations.

The Intel MKL library efficiently improves the performance of BLAS since it takes

advantage of special features in the new generation of Intel’s high-performance proces-

sors such as vector registers or SIMD instructions that greatly speed up MM. We do not

need to modify the source code to take advantage of the new features of Intel processors

with Intel MKL library. All we have to do is to link the code to Intel MKL library to

maximize the use of instruction- and register-level SIMD parallelism and make use of

the cache tiling technique. The BLAS significantly improves the performance of MM.

However, it cannot eliminate the overhead caused by matrix transposition or provide

parallel non-major-directional accessibility.

In addition, Intel integrated performance primitives (Intel IPP) offer developer’s

high-quality, low-level building blocks for image processing, signal processing, and other

26

computations that involve large vector and matrices. Intel IPP libraries are designed

to take advantage of Intel SSE, Intel AVX/AVX512 instructions. These instructions

process 128, 256, and 512 bits of data in a single instruction, and accelerate matrix

processing. The performance of 2-D applications can be improved by five and ten times

by using the Intel IPP library. Similarly to Intel MKL library, Intel IPP significantly

improves the performance of image processing or signal processing by maximizing use

of SIMD instructions. However, it cannot provide parallel non-major-directional ac-

cessibility and the overhead caused by transposition cannot be eliminated.

27

4 Skewed storage scheme

4.1 Parallel row- and column-directional access by using skewed

storage scheme

Parallel processing is particularly important in current computer systems. The SIMD

architecture is designed to perform vector operations in parallel by employing a number

of operation units to undertake work on each element of the vector. It can easily provide

significantly higher memory access throughput by using memory with a wide I/O port.

However, this simple wide I/O memory is not effective for acceleration of non-major

directional access, which is the column-directional access required to eliminate the

significant computing loads of transpositions in 2-D processing.

Figure 4.14 shows a 4×4 sized matrix that is stored in a 4-bank structured memory

where each row or diagonal of matrix A can be accessed in parallel without conflict

so that the conventional storage scheme only provides parallel access to a row or a

diagonal. However, each column of matrix A cannot be accessed in parallel since all

its elements are in the same bank so that parallel access cannot be performed due

to memory conflict. As a result, simple I/O expansion requires n time’s load/store

operations for column access. Here, n equals the number of elements that compose the

column. In contrast, the following skewed storage scheme allows parallel single time

access to both the row and column.

4.1.1 Skewed storage scheme

The 4-bank structured memory with a skewed storage scheme in Figure 4.15 provides

parallel row- and column-directional access to a 4×4 sized matrix. As shown in the

Figure, the first, second, third and fourth row of the matrix are stored with additional

skews corresponding to 0, 1, 2 and 3. Since the matrix is skewed, additional operations

are needed to align the elements after the elements have been loaded to the processor

register.

For example, if the processor accesses elements of a row, as shown in Figure 4.15,

note that the elements in the first row are properly aligned. However, the elements in

the second, third and fourth row need to be rotated left once for the second row, twice

28

A00 A01 A02 A03

A10

A20

A30

A11

A21

A31

A12

A22

A32

A13

A23

A33

Bank0 Bank1 Bank2 Bank3

Figure 4.14: 4-bank structured memory.

A00 A01 A02 A03

A13

A22

A31

A10

A23

A32

A11

A20

A33

A12

A21

A30

Bank0 Bank1 Bank2 Bank3

Figure 4.15: 4-bank structured memory that supports skewed storage scheme.

for the third and three times for the forth. The elements in the Nth row generally need

to be rotated (N-1) times to the left to be aligned. However, we can no longer access

diagonals without conflict, as shown in Figure 4.15. This is because there is no way to

store an N×N matrix in N-bank memory when N is even, so that all the rows, columns

and diagonals can be accessed without conflict. An N-bank structured memory with

a skewed storage scheme causes an increase in the entire scale of hardware. This is

because each memory bank needs an address generation circuit to calculate the address.

In addition, a skewed storage scheme should be adopted in L1 cache memory because if

29

it is adopted in a lower level cache or main memory, the L1 cache must be individually

stored in both row and column data.

4.1.2 Parallel non-major-directional tile access by using skewed storage
scheme

Parallel access in the row and column directions can be achieved by using a skewed

storage scheme. However, the conventional cache cannot provide efficient access to

2-D localized array data because it only has conventional cache line accessibility. As a

result, it suffers from the excessive data transfer problem.

Worst Case

Best Case
8byte

required data unnecessary data

4x4pixel cache line

8byte

Figure 4.16: Block-offset mapping.

Block-offset mapping is a method of data allocation that is suitable for 2-D localized

data access [4], where the conventional cache line is divided into rectangular tiles and

each tile is allocated in raster scan order. Figure 4.17 shows an example of block-

offset mapping that consists of 8×4 size raster tile shapes. Excessive data transmission

does not occur in the best case when reading the 16×16 macroblock. Excessive data

transmission is suppressed to 224 byte in the worst case. The number of accesses

for 8×4-byte tiles and 32 byte raster lines are summarized in Table 4.2. Block-offset

30

mapping makes it possible to reduce about 44% of accesses compared with conventional

raster mapping. This block-offset mapping is also called a single-level tiling data layout

or a block data layout.

Table 4.2: Access count reduction rate.

Access count

Block size 16×16 16×8 8×16 8×8 8×4 4×8 4×4

Raster line access
23.5 11.75 19.5 9.75 4.88 8.75 4.38

(32×1)

Block-offset mapping
13.66 7.91 8.91 5.16 3.28 3.78 2.41

(8×4)

Access count
41.8% 32.7% 54.3% 47.1% 32.7% 56.8% 44.9%

reduction rate

If the conventional cache line is divided into sublines in the main memory, parallel

row- and column-directional access can be easily implemented by using a multi-bank

memory array structure that supports a skewed array storage scheme. As shown in

Figure 4.17, line data can be accessed by feeding a common address signal to all

banks. On the other hand, tile data can be accessed by incremental addressing between

neighboring banks. Conversion between skewed and non-skewed data arrays must

naturally be performed by the upper or lower barrel shifter in each access.

Figure 4.17 shows that the 32 byte cache line is divided into four 8 byte-sized

sublines that compose an 8×4 byte-sized tile. This means the data alignment is 8 byte

and the CPU fetches 32 bytes starting at the requested address of an 8 byte stride.

Data alignment can also be set to 4 byte if the 32 byte cache line is stored by using 4×8

byte-sized tiles in the main memory, as shown in Figure 4.18. The number of memory

banks increases to eight to meet the requirements for accessing data in parallel in both

row and column directions.

Using a single-level tiling data layout and a skewed storage scheme can provide

parallel row- and column-directional accessibility and reduce the amount of excessive

data transfer. However, the single-level tiling data layout only divides the data into

single-level cache line-sized tiles. It does not effectively reduce the number of TLB

31

Main memory

0 1 2 3

0 3

20 1

3

2

0 1

3

21

32

0

1

Tile

Barrel shifter

8

4

Bank0 Bank1 Bank2 Bank3

Figure 4.17: 8×4 byte-sized tile access by using skewed storage scheme.

Main memory

Tile

Barrel shifter

8

4

0 2 31

Bank0 Bank1 Bank2 Bank3 Bank4 Bank5 Bank6 Bank7

4 6 75

Figure 4.18: 4×8 byte-sized tile access by using skewed storage scheme.

misses since each tile in the column direction is mapped to a different page.

For example, Figure 4.19 shows that a 32 byte cache line is stored as an 8×4 byte-

sized tile in the memory. As was explained in Section 2.1.2.1, the conventional computer

32

0

31

32

63 511

512

543

544

575 1023

2016

2047

2048

2079

2080

2111

2528

2559

2560

2591

2592

2623

3040

3071

4064

4095

4096

4127

4128

4159

4576

4607

...

...

...

...

...

...

...

992480

8

4

8x4 tile-based mapping, arranged in row-major order

Each 8Kbyte page holds 1024 doubles

With column-directional access, each new tile is on a new page

Figure 4.19: Block-offset mapping for a large-sized 2-D data access.

system adopts a TLB to speedup address translation: e.g., a typical 64-entry data TLB

with 8 Kbytes pages has an effective span of 64×8 KB = 512 KB. Unfortunately, if

the elements in the column direction are contiguously accessed, TLB misses frequently

occur. This figure shows a matrix having rows that are composed of 2048 doubles and

stored in the single-level tiling data layout. Each 8 Kbytes page holds 1024 doubles;

in other words 256 tiles each of which is composed of four 8 byte sized sublines. When

the processor accesses data in the row direction, one page is accessed every 256/8 =

32 accesses (therefore, the hit rate is 1 - 1/32 = 96.9%); however, when the processor

accesses data in the column direction, one page is accessed every 4 accesses (therefore,

the hit rate is 1 - 1/4 = 75%). The author found that the single-level tiling data layout

was still not effective to reduce TLB misses. It is possible to solve this problem by

recursively applying the tile again. The author will describe this technique in the next

section.

33

5 Hierarchical tiling data layout

5.1 Effectiveness of hierarchical tiling data layout

The raster layout is not suitable for multi-dimensional applications, since it is effective

in only major-directional data access and not effective in utilizing 2-D reference locality.

Conventional tiling method can improve capability utilizing 2-D reference locality. In

addition, column-directional access can be performed by implementing skewed storage

scheme or gather/scatter mechanism. By combining a skewed storage scheme with a

single-level tiling data layout, as shown in Section 4.1.2, parallel data access in both row

and column directions can be performed. However, the TLB misses problem remains to

be solved for efficient column-directional parallel access. Hierarchical tiling data layout

(multi-level tiling data layout) is based on tile’s recursive partitioning into small size of

sub-tiles, each of which is arranged in raster scan order. It can map a 2-D data array

to a 1-D data array while preserving data reference locality in both row and column

directions. It is more effective than conventional single-level tiling in terms of reducing

TLB misses in the data access of power-of-two sized address strides. It improves the

utilization capability of 2-D reference locality.

5.1.1 Block data layout

As shown in Section 2.1.1, the raster layout has some drawbacks. Consider a large

matrix stored in row-major layout, column-directional data accesses cause frequent

TLB misses due to the large address stride. Actually, if the row size of a matrix is

greater than the number of TLB entries, column-directional data access causes frequent

TLB misses and leads to significant performance degradation.

Block data layout is more efficient than a raster layout due to good utilization

of 2-D reference locality and TLB performance. Data in the block data layout are

partitioned into equally sized tiles, each of which is ordered in raster scan order. The

block data layout is also called a single-level tiling data layout, as shown in Section

4.1.2. Figure 5.20 shows that block data layout divides an 8×8 sized matrix into 4×4

sized of sub-matrix (4×4 sized tile). The tiles are arranged in the row-major order

so that all elements of each tile are stored in contiguous locations in memory. For

34

1 2 3 160 17 18 19

5 6 7 204 21 22 23

9 10 11 248 25 26 27

13 14 15 2812 29 30 31

33 34 35 4832 49 50 51

37 38 39 5236 53 54 55

41 42 43 5640 57 58 59

45 46 47 6044 61 62 63

Figure 5.20: Block data layout, using 4×4 tile.

example, consider cache line is 128 byte (16 quad words for x86 architecture), each tile

holds 16 quad words sub-matrix. In the row-directional access, the four iterations 0, 1,

2, 3 access locations on the same cache line. The remaining 12 locations on this tile are

not accessed. Therefore, for large-sized 2-D data access, the expected cache hit rate is

75% because each tile has to be loaded four times to obtain 16 quad words.

Compared with raster layout, block data layout significantly decrease the number

of TLB misses in the column-directional access. In addition, all elements of each tile

has the same tag if the tile size is equal to page size so that any data access in the same

tile does not cause conflict misses. However, the block data layout only matching tile

size to page size cannot provide parallel tile access capability. We can overcome this

problem by dividing the block data layout into multi-level tiling data layout, such as

Z-Morton layout or Morton hybrid layout.

5.1.2 Z-Morton layout

Compared with the conventional raster layout and the block data layout, the multi-level

tiling data layout such as the Z-Morton layout, have been proposed as a compromise

between the row-major and column-major layouts for 2-D arrays. The Z-Morton layout

is a mapping of multi-dimensional data to one dimensional space that preserves their

35

locality. As shown in Figure 5.21, the Z-Morton layout divides an original 8×8 data

array into four quadrants, which are ordered in raster scan order. Each quadrant is

further divided into child quadrants that are laid out in a similar manner. At the end

of recursion, elements of the quadrant are mapped onto contiguous memory location.

This is similar to the arrangement of elements of a tile in block data layout. However,

Z-Morton layout maps all quadrants onto contiguous memory location. Therefore,

Z-Morton layout can be considered as a multi-level block data layout.

1 4 5 160 17 20 21

3 6 7 182 19 22 23

9 12 13 248 25 28 29

11 14 15 2610 27 30 31

33 36 37 4832 49 52 53

35 38 39 5034 51 54 55

41 44 45 5640 57 60 61

43 46 47 5842 59 62 63

Figure 5.21: Z-Morton layout.

The benefits of this data layout are as follows:

• If the quadrant size at a certain level is matched with the page or cache line

size to meet alignment restrictions, cache line conflicts, TLB misses, and page

faults between the main memory and the hard disk can be reduced. In addition,

compatibility with burst transfer can be improved by the Z-Morton layout, be-

cause each divided data or element data of the lowest level divided data can be

contiguously accessed with a high probability.

• If the lowest level divided unit data can be assigned to a cache line, i.e., both

row and column-directional several contiguous data are accessed as the smallest

unit data in parallel, which we call a line and a tile, unnecessary data transfer to

and from the external processor or the lower level cache is reduced.

36

• The Z-Morton layout provides substantial 2-D spatial reference locality when

traversed in the row and column directions. Given a cache with any power-of-

two cache line size, the cache hit rate of row-directional access is the same as

the cache hit rate of column-directional access. For row- and column-directional

data access, the theoretical cache hit rate for a cache with cache line size 22k is

1 - (1/2k).

• Within each quadrant, sub-quadrants are recursively placed in the same Z-order.

If the quadrant size at a certain level is matched with the page size, unused

regions are not allocated in virtual memory.

Table 5.3: Theoretical cache and TLB hit rate for row-directional access of a large-
sized 2-D array of double-precision floating-point operations. We do not consider the
additional conflict misses due to 2-D data locality.

Row-major layout Z-Morton layout Column-major layout

32 byte cache line 75% 50% 0%

64 byte cache line 87.5% 64.6% 0%

128 byte cache line 93.8% 75% 0%

4 KB page 99.8% 95.6% 0%

8 KB page 99.9% 96.9% 0%

Table 5.4: Theoretical cache and TLB hit rate for column-directional access of a large-
sized 2-D array of double-precision floating-point operations. We do not consider the
additional conflict misses due to 2-D data locality.

Row-major layout Z-Morton layout Column-major layout

32 byte cache line 0% 50% 75%

64 byte cache line 0% 64.6% 87.5%

128 byte cache line 0% 75% 93.8%

4 KB page 0% 95.6% 99.8%

8 KB page 0% 96.9% 99.9%

37

Table 5.3 and 5.4 show the theoretical hit rate for row-directional access and

column-directional access, respectively. As shown in Table 5.3, for 32 byte cache line

(4 quad words, k = 1) this gives a hit rate of 50%. For 64 byte cache line (8 quad

words, k = 1.5) the hit rate is 64.6%. For 128 byte cache line (16 quad words, k = 2)

the hit rate is 75%. For 4 KB page (512 quad words, k = 4.5) the hit rate is 95.6%.

For 8 KB page (1024 quad words, k = 5) the hit rate is 96.9%. Row-directional access

in the row-major layout gives high hit rate, but the hit rate of column-major layout is

0%. Compared with the raster layout, the Z-Morton layout provides the same cache hit

rate for both row- and column-directional access, as shown in Table 5.3 and 5.4. The

hit rate of the Z-Morton layout is low because the Z-Morton layout does not provide

cache line-sized tile access in the column direction.

In addition, the overall 2-D memory access performance of the Z-Morton layout is

in general consistent for various data sizes compared with the raster layout. However,

in order to handle the array indices of the Z-Morton layout without address conversion

burden [18] [30], it is imperative that the raster layout is automatically transformed

to the Z-Morton layout. In addition, since the Z-Morton layout divides data into

multiple-levels, the complexity of the hierarchical Z-Morton imposes a certain amount

of address calculation overhead for address translation on each access, which takes

logarithmic time with respect to the address length [31] [32]. Some previous software-

based techniques employ logical manipulations or look-up tables [13] to reduce the

address calculation cost, but the overhead is still not eliminated. As such, the Morton

address calculation imposes a software-overhead cost to exploit the 2-D spatial reference

locality benefits of the Z-Morton layout.

5.1.3 Morton hybrid layout

Z-Morton layout can also be used only on higher-level quadrants, while the lowest-

level quadrants still use conventional row- or column-major layout such as Morton

hybrid layout [33] [34]. Figure 5.22 and 5.23 show a 16×16 sized Z-Morton layout

and Morton hybrid layout, respectively. Figure 5.23 shows that Morton hybrid layout

divides original 16×16 matrix into equally sized quadrants. Elements are stored within

in column-major the lowest-level quadrants. Outside the lowest-level quadrants, high-

38

level quadrants are stored in Z-Morton ordering. This provides 2-D data locality inside

each quadrant, with fast address calculation among different quadrants.

Morton hybrid layout is designed to take advantage of hardware architecture and

compiler optimization while still exploiting the benefits of hierarchical tiling data lay-

out. To reduce cache misses and TLB misses, the lowest-level quadrant size is typically

chosen to be equal to cache size or page size. To take advantage of the Intel library

and compiler optimizations on current processor, such as BLAS technique, the lowest-

level quadrant of a hierarchical tiling data layout must be row or column-major order.

Therefore, it is possible to combine the BLAS optimization with the Morton hybrid

layout to improve cache performance.

16 640 80

15 31 79 95

48 9632 112

47 63 111 127

144 192128 208

143 159 207 223

176 224160 240

175 191 239 255

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Figure 5.22: Z-Morton layout: 16×16 matrix.

A related work [33] proposed a method that apply Morton hybrid layout to dense

BLAS techniques to improve the performance of dense matrix multiplication signifi-

cantly. In addition, the evaluation results also showed that the lowest-quadrant size is

largely not only dependent on the memory architecture but also the BLAS implemen-

tation. This is one disadvantage of Morton hybrid layout. While Z-Morton layout has

the advantage that its performance is only dependent on memory architecture, Morton

hybrid layout requires significant cache testing to achieve best performance on both

memory architecture and the BLAS implementation.

39

16 640 80

15 31 79 95

48 9632 112

47 63 111 127

144 192128 208

143 159 207 223

176 224160 240

175 191 239 255

0 4

1 5

8 12

9 13

2 6

3 7

10 14

11 15

Figure 5.23: Morton hybrid layout: 16×16 matrix.

5.2 Problem of the hierarchical tiling data layout

As shown in Section 4, parallel accessibility for both tile and line as well as the reduction

of cache conflict misses is highly effective for achieving high-speed 2-D data transfer.

The conventional Z-Morton layout has been used to improve 2-D spatial reference

locality and reduce conflict misses efficiently by a lot of previous works. However,

the following two problems prevent the conventional Z-Morton layout to meet these

requirement:

• To support parallel cache line-sized tile access, the memory must be divided into

several 2-bytes-wide banks corresponding to the 2-byte-size subline. This division

causes an area increase of the cache memory.

• The conventional Z-Morton layout is not suitable for row or column data parallel

access, because the cascaded subline addresses are non-contiguous in both row

and the column directions.

Similarly to the Z-Morton layout, the block data layout and Morton hybrid layout

are also used to reduce TLB misses. They also cannot provide parallel data access in

both row and the column directions since the subline address in the row or column di-

rection are non-contiguous. In addition, an inevitable significant overhead is caused by

address calculation when these hierarchical tiling data layouts are usually implemented

40

on software. To solve these problems, this thesis proposes a 4-level Z-order tiling data

layout and a Cache-based hybrid Z-ordering layout based on a hardware-based address

conversion. The hardware conversion can eliminate the address calculation overhead

but also maximize utilization of 2-D reference locality. Parallel tile and line access can

be performed by using our proposed layout and the multi-bank cache organization that

supports skewed storage scheme.

41

6 Proposed cache memory with tile and line acces-

sibility

6.1 Proposed Multi-level Z-order tiling data layout

Although SIMD extensions are nowadays commonly found on most architectures, such

as AVX or AVX2, their effects are limited by a lack of column-directional parallel

access capability. Therefore, the parallel access of both tiles and lines is required

for achieving high-speed 2-D data transfer as well as the reduction of cache conflict

misses and TLB misses. The conventional hierarchical tiling data layout can improve

2-D spatial reference locality and reduce conflict misses and TLB misses efficiently.

However, several problems (as shown in Section 5.2) prevent the hierarchical tiling data

layout to meet these requirement. To eliminate these problems and provide substantial

2-D spatial reference locality, the author proposes two new data layouts based on the

conventional Z-Morton layout and Morton hybrid layout called the 4-level Z-order tiling

layout and the Cache-based hybrid Z-ordering layout.

6.1.1 4-level Z-order tiling data layout

The proposed 4-level Z-order tiling data layout hierarchical divides data into 3-level

tiles, each of which is arranged in raster scan order at the same level, as shown in

Figure 6.24. The majority of modern processors support memory pages of large sizes

(4 Mbytes or 2 Mbytes), which are called “large pages” or “super pages”. The large

page covers a larger address range than the small page so that using large pages can

reduce TLB misses. Therefore, the 1st-level large tile size is equal to a large page

size of 4 Mbytes. The 2nd-level medium tile is chosen equal to a page of 4 Kbytes,

which is the size commonly used in conventional computer systems. The 3rd-level tile

is simultaneously accessed to and from the cache memory, and its size is equal to the

cache line size. Therefore, parallel data access in the column direction can be realized

as this tile access. The tile access can eliminate the transposition required in matrix

calculation, FFT or DCT. The tile access can also provide efficient 2-D unit block

access for image processing and video coding, although its utilization might require

significant modification of the program code.

42

8 byte

8 byte ...

Tile

Medium tile Medium tile

64 byte 64 byte

Large tile
 4 MB

2048 byte
4-level Z-order space

64 KB

64 byte

Figure 6.24: 4-level Z-order tiling layout.

...

...

...

...

... Medium tile 4KB ...

8 byte

8 byte

64 byte

64 byte

...

Tile

Tile

0 1.2..... 7
8 9 10.. 15
16 17 18 23
24 25 26...... 31
32 33 34.. 39
40 41 42.... 47
48 49 50 ... 55
56 57 58. .. 63

8 byte

8 byte

64 65 66 71
72 73 74. 79
80 81 82.. 87
 88 89 90.. . 95
96 97 98 . 103
104 105 . 111
112 113... 119
120 121 127

8 byte

Figure 6.25: Medium tile and tile store data in raster scan order.

Figure 6.25 shows that a medium tile composed of 8×8 tiles store data in raster

scan order, and the conventional 64-byte cache line stores an 8×8 byte-sized tile. The

numbers in the tile represent 8-byte data that are contiguously accessed in the column

direction. Finally, the width of the 4-level Z-order tiling space is 64 Kbytes, as shown

in Figure 6.24. The large tile is 4 Mbytes and medium tiles (4 Kbytes) are arranged

in raster scan order in each large tile. Therefore, the division of the address space into

medium or large tile can minimizes the TLB updates, TLB misses, and excessive data

transfers between the main memory and the auxiliary storage.

43

6.1.2 Cache-based hybrid Z-ordering layout

The 4-level Z-order tiling data layout divides data into 3-level tiles, each of which

is arranged in row-major order at the same level, as shown in Figure 6.24. If a 2-D

program contiguously accesses data in the column direction, it may causes allocation of

unused regions in the virtual memory because the medium tiles in the column direction

are not mapped onto the location of contiguous memory. The author proposes a Cache-

based hybrid Z-ordering layout to avoid this problem.

... ...

64KB

Tile 8x8 byte

Medium tile 4KB Medium tile 4KB

Medium tile 4KB Medium tile 4KB

Z-Morton order

Row-major Row-major

Row-major Row-major

Figure 6.26: Cache-based hybrid Z-ordering layout (Medium tile and tile store data in
raster scan order).

Data in the proposed layout is recursively subdivided into equally sized tiles stops

at medium tiles with a size of T (4-byte-word×32). As shown in Figure 6.26, the size

of a medium tile is equal to 4 KB because modern computer systems normally support

a 4 KB page size. The division of the address space, which is similar to the 4-level

Z-order tiling data layout, into small or medium tiles, whose internal data tags are

equal to one another, matches the 2-D spatial reference locality to not only minimize

TLB updates or misses, but also excessive data transfers between the main memory

and auxiliary storage. A conventional 64 byte-sized cache line in each medium tile is

divided into 8×8 byte-sized unit tiles. Unit tile access corresponds to parallel access of

44

contiguous double words in the column direction. As shown in Figure 6.26, row-major

order is adopted inside the unit tiles and medium tiles. Data outside the medium tile

are stored in Z-Morton ordering among medium tiles. Based on the proposed layout,

allocation of unused regions in virtual memory can be significantly reduced.

6.1.2.1 Utilization of hardware prefetching

The Cache-based hybrid Z-ordering layout can also exploit constant-stride hardware

prefetching and cache tiling as well as the locality of the Z-Morton layout. Athanasaki

[35] proved that prefetching in combination with cache tiling and block data layout, set

optimal tiling size being equal to L1 cache size can decrease the L2 and TLB misses.

However, this approach could only exploit prefetching in the major-directional access.

Compared with this previous research, the proposed Cache-based hybrid Z-ordering

layout has three main features:

• It can exploit constant-stride prefetching in both row- and column-directional

access.

• It can be used for 2-D data processing because all levels of tiles are mapped into

contiguous memory locations. Data in each tile are accessed in raster scan order

and prefetching can be satisfactorily exploited.

• The medium tile size is equal to the cache way size and page size so that prefetch

can be effective for the column-directional access in the same medium tile. As

a result, the probability of crossing 4 KB page boundaries is less than 1/32 in

the column-directional contiguous access and TLB misses can be minimized in

processing using cache blocking techniques.

For example, consider the tiled MM that is shown in Listing 4. Arrays A[i][k]

and B[k][j] can be loaded by using constant-stride prefetching in corresponding row

direction and column direction. The matrix size is 32. The author has defined the size

of a medium tile to be 256×16 byte because the MM accesses data in the row direction

by 32×8 byte (256 byte).

45

Listing 4: The basic tiled MM version (6-loop tiled code).

1 int main()

2 {

3 double A[N][N], B[N][N], C[N][N];

4 for(ii = 0; ii < N; ii+=32)

5 for(jj = 0; jj < N; jj+=32)

6 for(kk = 0; kk < N; kk+=32)

7 for(i = ii; (i < N && i < ii + 32); i++)

8 for(j = jj; (j < N && j < jj + 32); j++)

9 for(k = kk; (k < N && k < kk + 32); k++)

10 C[i][j]+= A[i][k] * B[k][j];

11 }

By using constant-stride prefetching, there is only one miss occurs in the row-

directional access (32 accesses) for array A[i][k]. In addition, two misses occur in the

column-directional access (32 accesses) for array B[k][j] because there are only 16 rows

in each medium tile. Column-directional access crosses the boundary of the medium

tile, which causes additional cache misses and TLB misses. Therefore, the total cache

hit rate is 1 - 3/64 = 95.3%. Column-directional access causes a TLB miss per 16

access and row-directional access causes a TLB miss per 32 accesses in terms of TLB

performance. Therefore, the TLB hit rate for column-directional access is 1 - 1/16 =

93.8%. The TLB hit rate for row-directional access is 1 - 1/32 = 96.9%. Table 6.5

summarizes the theoretical cache and TLB hit rates for the three data layouts.

For the raster layout, the row-directional access only causes 1 miss per 32 accesses

if sequential unit-stride prefetching is used. Column-directional access causes 32 misses

per 32 accesses because each stride access crosses 4 KB page boundaries. As a result,

hardware prefetching cannot be used, but the cache hit rate is only 1 - 33/64 = 48.4%.

Table 6.5 shows the theoretical hit rate of different level of memory hierarchy for a

MM by using double-precision floating-point operations.

The author defines the size of a medium tile to be 128×32 byte for another MM

by single-precision floating-point operations because MM accesses the data in the row

direction by 32×4 byte (128 byte). By using constant-stride prefetching, there is

46

Table 6.5: Theoretical cache and TLB hit rate for MM with double-precision floating-
point operations. The author does not consider the additional conflict misses due to
2-D data locality.

Row-major layout Proposed layout Column-major layout

64 byte cache line 48.4% 95.3% 48.4%

4 KB page ∗ 99.8% 96.9% 0%

4 KB page ∗∗ 0% 93.8% 99.8%

∗(row-directional access), ∗∗(column-directional access)

only one miss occurred in the row-directional access (32 accesses) for array A[i][k].

In addition, there is only one misses occurred in the column-directional access (32

accesses) for B[k][j] because there are 32 rows in each medium tile. Therefore, the total

cache hit rate is 1 - 2/64 = 96.9%. Column-directional access causes a TLB miss per

32 accesses and row-directional access causes a TLB miss per 16 accesses in terms of

TLB performance. Therefore, the TLB hit rate for column-directional access is 1 -

1/32 = 96.9%. The TLB hit rate for row-directional access is 1 - 1/16 = 93.8%. Table

6.6 summarizes the theoretical cache and TLB hit rates for the three data layouts.

For the raster layout, the row-directional access causes only 1 miss per 32 accesses

if the sequential unit-stride prefetching is used. Column-directional access causes 32

misses per 32 accesses because the stride crosses 4 KB page boundaries. As a result,

hardware prefetching cannot be used, but the cache hit rate is only 1 - 33/64 = 48.4%.

Table 6.6 shows the theoretical cache and TLB hit rate.

Table 6.6: Theoretical cache and TLB hit rate for MM with single-precision floating-
point operations. The author does not consider the additional conflict misses due to
2-D data locality.

Row-major layout Proposed layout Column-major layout

64 byte cache line 48.4% 96.9% 48.4%

4 KB page ∗ 99.8% 93.8% 0%

4 KB page ∗∗ 0% 96.9% 99.8%

∗(row-directional access), ∗∗(column-directional access)

47

6.1.2.2 Strassen algorithm for MM

Strassen came up with a recursive MM algorithm to multiply N×N matrices in

1969, by using fewer arithmetic operations, which ran faster than the conventional MM

algorithm [36]. The Strassen method of MM is a typical divide and conquer algorithm.

In contrast to the conventional MM algorithm that involves 8 multiplications and 4

additions, the Strassen algorithm is based on a scheme involving 7 multiplications and

18 additions for the product of two 2×2 matrices. This basic scheme that performs a

single level recursion on 2×2 tile is:

C =
C11 C12

C21 C22

A11 A12

A21 A22

B11 B12

B21 B22

= x

Figure 6.27: Strassen algorithm performs a single level recursion 2×2 tile.

Table 6.7: Strassen algorithm.

Level 1 T1 = A11 + A22 T6 = B11 + B22

T2 = A21 + A22 T7 = B12 - B22

T3 = A11 + A12 T8 = B21 - B11

T4 = A21 - A11 T9 = B11 + B12

T5 = A12 - A22 T10 = B21 + B22

Level 2 Q1 = T1 × T6 Q5 = T3 × B22

Q2 = T2 × B11 Q6 = T4 × T9

Q3 = A11 × T7 Q7 = T5 × T10

Q4 = A22 × T8

Level 3 T1 = Q1 + Q4 T3 = Q3 + Q1

T2 = Q5 - Q7 T4 = Q2 - Q6

Level 4 C11 = T1 - T2 C12 = Q3 + Q5

C21 = Q2 + Q4 C22 = T3 - T4

48

The divide and conquer technique utilized in the Strassen algorithm has a draw-

back. If the division proceeds to the level of small sized matrix elements, uncontiguous

different data loads causing cache and TLB misses increase so that the recursion over-

head becomes significant. Therefore, the Strassen algorithm provides poor performance

compared with the conventional MM algorithm for small sized matrices because the

L2 and L3 cache misses occur frequently [37] [38]. As shown in Table 6.7, 10 tempo-

rary variables are required in level 1, seven in level 2, and four in level 3. In order to

reduce the overhead, we have to stop recursion at a sufficiently large-sized tile whose

submatrices perform the conventional MM algorithm.

The Strassen algorithm internally uses a hierarchical tiling data layout that is known

as the Z-Morton layout [39]. However, if the Z-Morton layout recursively divides 2-D

data until the single level of a 2×2-sized tile, combining the Strassen algorithm with

the Z-Morton layout provides poor performance for small sized matrices due to the

address conversion overhead and excessive data transfer.

The proposed layout recursively divides the data into equally sized tiles until a

given truncation size of 128 bytes is reached in the row direction, which results in a

base medium tile size 128×32. Combining the Strassen algorithm with the proposed

layout can improve MM performance for small sized matrices of 64×64. Outside the

medium tile, data is stored in Z-Morton ordering. Therefore, all addresses are stored

in the contiguous memory location and the hardware prefetching technique can be

exploited. As a result, the number of L2 and L3 cache misses, as well as the TLB

misses can be reduced and the Strassen algorithm can be effective for any matrix size

of more than 64×64 by using the proposed layout.

6.2 The proposed cache architecture

In Section 6.1, the author presented the 4-level Z-order tiling layout based on the Z-

Morton layout and the Cache-based hybrid Z-ordering layout based on the Morton

hybrid layout, which can effectively exploit 2-D data locality and reduce TLB misses

in the column direction as well as those in the row direction. In this section, the author

proposes a new cache memory with tile and line accessibility to eliminate the overhead

of the Z-order tiling address calculation and support both parallel tile access in the

49

column direction and parallel line access in the row direction. The proposed two lay-

outs provide 8×8 byte tile access that enables parallel access of eight double-precision

floating-point data in the column direction which is useful in scientific computation

utilizing SIMD operations.

As shown in Figure 6.28, the proposed cache is the area enclosed by the dotted line.

The cache consists of an address conversion unit and multiple tag and data memory

banks. It is an 8-way set associative cache of 32 Kbytes with a 64-byte cache line.

Furthermore, the proposed cache divides tag and data memory into eight banks and

provides access function of both 8×8 byte-sized tile or 64-byte-sized line to the 4-level

Z-order tiling layout. On the other hand, the proposed cache with a 32-byte cache line

divides the tag and data memory into four banks to provide access function of the 8×4

byte-sized tile and the 32-byte-sized line [15] [16]. The second and third level caches

and the main memory adopt the 4-level Z-order tiling layout. In this paper, the author

primarily shows the specific design of the proposed cache with a 64-byte cache line.

SIMD-based general purpose-oriented data path

Main memory

T1

Address calculation

TLB

I1

Raster scan order address

Address translation

OffsetI0T0

Way0

Way7

Address conversion unit

(4-level Z-order tiling layout)

 Cache memory
(4-level Z-order tiling layout)

Mode

4-level Z-order tiling address

Tag0 Tag1 Tag7 Data0 Data1 Data7

Tag0 Tag1 Tag7 Data0 Data1 Data7

DatabankTagbank

Figure 6.28: Block diagram of the proposed cache memory.

6.2.1 Parallel tile and line accessibility

The proposed cache provides 8×8 byte-sized tile and 64 byte-sized line accessibility.

Tile access corresponding to parallel column-directional data access can eliminate the

transposition in matrix computation. Therefore, the proposed cache provides parallel

50

data accessibility in both row and column directions. In addition, since both row and

column-directional several contiguous data are accessed as a line or a tile, excessive

data transfer to and from the external processor or the lower level cache is reduced.

Figure 6.29 shows an example of the 8×8 byte-sized tile access for motion estimation.

In the best case, excessive data transmission is not occurred when reading the 16×16

macroblock. In the worst case, excessive data transmission is suppressed from 128×16

- 16×16 = 1792 byte to 8×3×8×3 - 16×16 = 320 byte.

8 byte

Required data Unnecessary data

Worst Case

Best Case

8x8pixel Cache line 8x8 byte

8 byte

Figure 6.29: Tile data access.

6.2.2 Improvement of data transfer speed

The proposed cache adopts the 4-level Z-order tiling data layout. Cache line-sized

tile access corresponding to parallel data access in the column direction can exploit

2-D locality. The theoretical hit rate of the proposed layout for row-directional and

column-directional access is almost the same as that of for major-directional access of

51

the row- and column-major layouts, respectively. Therefore, data transfer efficiency

between processor and main memory can be improved significantly.

6.2.3 Improvement of degree of coding flexibility for 2-D program

The 4-level Z-order tiling data layout can exploit 2-D reference locality in both row

and column direction. The proposed cache can minimize TLB misses in 2-D processing

by only using the conventional simple tiling code. Therefore, it can also minimizes

the optimization efforts of an original tiling code in which it is difficult to utilize

the manually coded libraries such as OpenBLAS or Intel MKL. In other words, the

proposed cache that supports column-directional parallel access allows either row-major

based or column-major based 2-D program coding so that it increases the degree of

coding flexibility. Therefore, the programmer’s coding burden to improve processing

efficiency can be reduced by using our proposed cache.

6.2.4 Load instructions reduction by using SIMD extensions

The proposed cache provides parallel column-directional access and row-directional

access so that it can improve the instruction throughput with low latency overhead

of the cache memory. By using SIMD extensions, the number of load instructions

required for column-directional access (8×8 byte-sized tile access) or row-directional

access (64 byte-sized line access) can be reduced to only one eighth of that required

for conventional raster line access.

6.3 Parallel tile and line access mechanism

Tile access corresponding to column-directional parallel data access can eliminate the

transposition required in matrix calculations, FFT, DCT, 2-D FIR filter and so on.

Also, it can effectively reduce the amount of excessive data transfer and satisfactorily

exploit the 2-D data locality as compared with the conventional raster line access be-

cause image processing applications operate on small blocks in 2-D data [40]. However,

line access as cache line access is still essential for current conventional applications.

Therefore, in this section, the author proposes a new cache memory with both tile and

line accessibility that is based on a multiple eight-bank memory array structure. The

52

memory banks are defined as tag-bank0-7 and data-bank0-7, as shown in Figure 6.28.

Multiple sublines composing each tile are loaded from the L2 cache to the memory

banks. However, if some of the sublines are stored in the same bank, the whole tile

may not be accessed in a single read cycle. Figure 6.30 shows a conventional storage

scheme. Sublines of each tile are stored in different memory bank and can be read out

in parallel. However, sublines of each line are stored in the same memory bank cannot

be read out in parallel.

Main memory (4-level Z-order tiling layout)

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

Data-bank0 Data-bank1 Data-bank2 Data-bank3 Data-bank4 Data-bank5 Data-bank6 Data-bank7

Figure 6.30: Conventional storage scheme.

To eliminate this problem, the author adopts a skewed array scheme to store the tile

or line to the cache memory. Figure 6.31 and 6.32 show that the parallel tile and line

are loaded to the processor, respectively. The line can be accessed by feeding a common

address signal to all banks. On the other hand, the tile can be accessed by incremental

address feeding between neighboring banks. The skew and un-skew operations are left

to the external processor because their circuit implementation causes an overhead in

the hardware scale and transfer delays.

To provide the parallel 8×8 byte-sized tile and 64 byte-sized line access function, the

data memory of the proposed cache must be divided into eight banks (data-bank0-7), as

shown in Figure 6.28. Each tile and line can be accessed in parallel via the skewed array

scheme. Figure 6.31 shows that the fourth tile are transferred to the processor. After

the sublines of the tile are loaded to the processor register, additional shift operations

are need to align the sublines. Figure 6.32 shows a line access that the fourth row

53

Main memory (4-level Z-order tiling layout)

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

Data-bank0 Data-bank1 Data-bank2 Data-bank3 Data-bank4 Data-bank5 Data-bank6 Data-bank7

4 0 1 2 35 6 7

0 4 5 6 71 2 3

Figure 6.31: Parallel tile and line access scheme (line access).

Main memory (4-level Z-order tiling layout)

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

Data-bank0 Data-bank1 Data-bank2 Data-bank3 Data-bank4 Data-bank5 Data-bank6 Data-bank7

4 4 4 44 4 4 4

4 4 4 44 4 4 4

Figure 6.32: Parallel tile and line access scheme (tile access).

elements are loaded to the processor. Additional shift operations also need to align the

elements. This parallel aligned/unaligned data access in the row/column direction can

improve the instruction throughput with low latency overhead of the cache memory.

The number of load instruction required for column-directional contiguous access is

only one eighth of that required for conventional raster line access.

54

6.4 Hardware-based address bit-order interchange unit for

raster scan order to the 4-level Z-order tiling space

In this section, the author proposes a hardware-based address translation unit that

transparently translates the conventional raster scan order address to a 4-level Z-order

tiling address by adding an additional pipeline stage. Our hardware-based method has

the following differences from conventional software-based address translation:

• Address translations using the hardware unit not only improve data locality but

also eliminate the processing overhead for Z-order address calculation and reduce

the programmer’s workload. To improve 2-D data locality, the 1st, 2nd and 3rd

level tiles of the 4-level Z-order tiling layout are aligned to 4 Mbytes, 4 Kbytes,

and 64 byte in Z-order, respectively.

• The author adopts a pure hardware-based address translation unit. A logical

address of raster layout can be transformed to a virtual address of 4-level Z-order

via simple bit-order interchange operations in the hardware transparent to the

OS or software. As a result, the 4-level Z-order tiling layout is accessed as a

conventional raster layout.

• For applications such as MM, if the width of the 2-D processing area is not fixed, a

different address bit-order interchange is required for the width when the matrix

size changes. This complex address translation increases the address transla-

tion overhead and may cause a clock-cycle constraint problem [17]. To avoid

this different address bit-order interchange and simplify the address calculation,

the individual width of the 4-level Z-order tiling area is fixed to the sufficiently

large size of 64 Kbytes-wide, which meets almost all space requirement for 2-D

applications.

As shown in Figure 6.28, via the address translation unit, it is possible to convert

a logical address in raster scan order from an external processor into a virtual address

to allow an external processor to access the 4-level Z-order tiling data as conventional

raster scan order data. For almost all 2-D data applications, the width of the 2-D data

to be processed is smaller than 64 Kbytes. Therefore, to locate the entire 2-D data

55

in the 4-level Z-order tiling space, the author replaces the specific single-level Z-order

tiling address translations, such as 256 byte, 512 byte and 1Kbyte widths [11] to only

a 4-level Z-order address translation of a sufficient width of 64 Kbytes. This proposed

hardware-based address translation unit can further simplify the address calculation,

compared with previous work [17].

64K

8Kx4K

4-level Z-order tiling area

8K 16K 32K

16Kx16K 32Kx16K

8Kx16K

20Kx4K

Figure 6.33: Various sizes of 2-D data allocation in the 4-level Z-order tiling layout.

Figure 6.33 shows how 2-D data of various sizes are allocated to the 64 Kbytes-

wide 4-level Z-order tiling area, in which the main memory and the L2/L3 cache store

all data in the same way as the proposed L1 cache memory. Figure 6.34 shows a

memory allocation assigning the tiling area between the stack area and static area in

the dynamic area. The higher and lower address pointers determine the address range

of the tiling area. Inside the tiling area, all data are stored by tile. Outside the tiling

area, data are stored by line in the conventional raster scan order. In addition, line

accessibility to the tiling area provides a transfer function between the tiling area and

the raster scan order area. In the transfer operation, the compiler assigns load/store

instructions for the line in the tiling area and normal load/store instructions in the

outside area.

The translation from the conventional raster scan order address to the 4-level Z-

order tiling address is performed by the address bit-order interchange, as shown in

Figure 6.35. In addition, the proposed tiles and lines are stored in the tiling area.

The conventional raster lines are accessed in raster scan order outside the tiling area.

Consider a 2-D application in which any data are accessed in- or outside the tiling

area. If a cache miss occurs on a tile/line read, the corresponding tile/line is loaded

56

Stack

Dynamic area

Static area

Text

Reserved

Stack

Dynamic area

Static area

Text

Reserved

Z-order area
Dynamic area

Z-order area
 Static area

 No address translation
Raster scan order access

 Address translation
 Tile/Line access

Higher address pointer

Lower address pointer

Figure 6.34: Memory allocation for 4-level Z-order tiling space.

from the tiling area in the virtual memory space. If another cache miss occurs on a

conventional raster line read, the corresponding raster line is loaded from outside of

the tiling area. Therefore, the tile/line from the tiling area and the conventional raster

line from outside of the tiling area should be stored in the same cache. The inside

and the outside of the Z-order area should be used for 2-D and 1-D data processing,

respectively.

Tag-upper Tag-middle Tag-lower Index Offset-upper Offset-lower

Tag Index Offset

Offset-lowerTag-lowerTag-upper Index

Tag-middle

Offset-upper 3 bits

Tag-middle

5 bits

5 bits

3 bits

4-level Z-order tiling address

Raster scan order address

DTLB DL1 Cache

31 0

31 0

Figure 6.35: The address bit interchange.

The cache memory address consists of six fields. To convert a raster scan order

address to a 4-level Z-order tiling address, the tag-middle and the index bit fields

are interchanged, and then, the lower-order 3 bits of the tag-middle field are inserted

between the offset-upper and offset-lower fields. Finally, the middle-order 5 bits of

57

20 26 19 25 6 12

31-Wt 30-Wt 5Wt (Bit number of tag_upper)

2 1 0

Tag Index Offset

29-Wt

Mux30 Mux29 Mux12

1 1 1

16 6

4 3

Mode

11 10 9 8 7 6

27-Wt 26-Wt

4 3

Mode

Mode Mode

3031 2928

21 27

Mux30

1

5

28-Wt

Figure 6.36: Address translation circuit.

the tag-lower field and lower-order 5 bits of the tag-upper field are interchanged, as

shown in Figure 6.35. In this case, the tag-lower and index fields consist of 10 bits

for the 64 Kbytes width (210 (tag-lower + index) × 26 (offset) = 64 Kbytes). The

higher-order 5 bits of the tag-lower field specify where a medium tile is placed in the

column-directional position of a large tile. In addition, the higher-order 5 bits of the

tag-middle field specify where a tile is placed in a medium tile, and the lower-order 3

bits of the tag-middle field specify where a constituent subline of a tile is placed in the

column direction in each tile. Field offset-upper represents the tile number in the row

direction in each medium tile. A translation circuit is shown in Figure 6.36. Since the

translator consists of single-stage 2 to 1 multiplexers selecting the 4-level Z-order tiling

address or the raster scan order address, it does not increase the access cycle time or

the latency.

6.5 Tag memory reduction method

A conventional cache mainly consists of two arrays: tag and actual data. The tag array

stores tag bits and valid bit for the cache line that are currently stored in the cache.

The index bits of the effective address are used to look up a tag in the tag array while

the combined index and offset bits are used to retrieve the data from the data array.

If the valid bit retrieved from the tag array is 1 then the data retrieved from the data

array is valid. The retrieved data might be valid but for a different address. Therefore,

the tag of the stored data (retrieved from the tag array) is compared to the tag bits

of the address. There is a cache hit if they are the same as each other and the valid

58

bit is 1. The data memories of the proposed cache illustrated in Figure 6.37 and 6.38

shows that the sublines of each tile are stored in each data bank, respectively. Multiple

sublines with the same color compose a tile.

M

Tag memory

Tagbank0 Tagbank1 Tagbank2 Tagbank3 Tagbank4 Tagbank5 Tagbank6 Tagbank7

M

Tag memory

Tagbank0 Tagbank1 Tagbank2 Tagbank3

Proposed cache with a 32 byte cache line Proposed cache with a 64 byte cache line

M

Bank0 Bank1 Bank2 Bank3

Data Data Data Data

Data memory

M

Data memory

Bank0 Bank1 Bank2 Bank3 Bank4 Bank5 Bank6 Bank7

Data Data Data Data Data Data Data Data

Figure 6.37: Each tag is added to each constituent subline of a skewed array composing
an aligned tile.

M/8

Tag memory

Tagbank0 Tagbank1 Tagbank2 Tagbank3 Tagbank4 Tagbank5 Tagbank6 Tagbank7

M/4

Tag memory

Tagbank0 Tagbank1 Tagbank2 Tagbank3

Proposed cache with a 32 byte cache line Proposed cache with a 64 byte cache line

M

Bank0 Bank1 Bank2 Bank3

Data Data Data Data

Data memory

M

Data memory

Bank0 Bank1 Bank2 Bank3 Bank4 Bank5 Bank6 Bank7

Data Data Data Data Data Data Data Data

Figure 6.38: Each tag is added to each aligned tile.

As shown in Figure 6.37, if a tag is allocated to each subline in the tile in the same

way as that in a conventional cache (each subline of the tile has a “tag” and a “data”

field), the capacity of the tag memory becomes 4 times (the proposed cache with a

59

32-byte cache line [19] [20]) or 8 times (the proposed cache with a 64-byte cache line in

this paper) that of the conventional cache because the tag memory has to be divided

into four- or eight-banks to store each subline tag. For suppressing this tag memory

capacity increase, the author proposes a tag memory reduction method adding a tag

to each aligned tile (each tile has a “tag” and a “data” field) and the capacity of the

tag memory is ideally reduced to the same capacity as that of the conventional cache,

as shown in Figure 6.38.

6.6 Unaligned tile access in the column direction

In the previous section, the author proposes a tag memory reduction method to sup-

press the hardware scale increase of the proposed cache. However, this method disables

non-aligned tile access because the two tag data of the column-directionally adjacent

tiles stored in the same tag bank are not accessed simultaneously.

Odd1

Even0

Odd1

Even0

Odd1

Even0

Odd1

Even0

Odd3

Even2

Even4

Odd3

Even2

Even4

Odd3

Even2

Even4

Odd3

Even2

Even4

Bank0 Bank1 Bank2 Bank3

Tagbank

Hit /miss determination

Odd1

Even0

Odd1

Even0

Odd3

Even2

Even4

Odd3

Even2

Even4

Bank4 Bank5

Odd1

Even0

Odd1

Even0

Odd3

Even2

Even4

Odd3

Even2

Even4

Bank6 Bank7

Figure 6.39: Unaligned tile access scheme.

To solve this problem, the storage locations of the tags in the odd-entries are in-

terchanged between tag-bank0 and tag-bank1 or between tag-bank2 and tag-bank3 for

the cache with a 32-byte cache line. If the cache line size is greater than 32 byte, the

storage locations of the tags in the odd-entries are interchanged between tag-bankN

and tag-bankN+1 (N is an even number and N = 0 ∼ Cache line size/8-1), as shown

in Figure 6.39. As a result, the two tag data of column-directionally adjacent tiles can

be read out in parallel. Therefore, the proposed cache can access column-directionally

aligned/unaligned tiles and 8-byte boundary aligned lines in parallel.

60

6.7 Dual data access mode for 1-D/2-D data access

In the previous section, the author proposed a new cache memory with both tile and

line accessibility for efficient 2-D data processing. To support the conventional raster

line access for 1-D data processing, the author also adds a dual data access mode to

the proposed cache memory.

Processor

Tile/Line
Address calculation Cache memory

8-bank memory array structure

Pmode

Tile/line accessConventional
 raster line

Pmode=0 Pmode=1

Main memory

Figure 6.40: Proposed cache for both 1-D and 2-D data processing.

Figure 6.40 shows that the proposed cache can appropriately switch a 2-D data

access mode for the proposed tile and line access to a 1-D data access mode for the

conventional raster line access. In the 1-D data access mode (Pmode = 0), the proposed

cache does not adopt the skewed array storage scheme. It works in the same way a

conventional cache. Data in the cache and main memory are stored in raster scan

order. The miss penalty of conventional 1-D data access to the proposed cache is not

increased as compared with that of the conventional cache. Therefore, the conventional

raster line access can also be achieved by switching the dual data access mode to 1-D

data access mode.

61

7 Hardware scale optimization of the proposed cache

In Section 6.5, the author proposed a tag memory reduction method that can reduce

the tag memory capacity of the proposed cache to the same as a conventional cache.

However, via this method, the capacity of each tag memory bank is reduced to only 32

words (128 words / 4 -banks) or to 8 words (64 words / 8 -banks) for a cache memory

with a 32-byte or 64-byte cache line, respectively. For VLSI hardware design, each

tag memory bank is composed of one SRAM macro. The size of conventional SRAM

macro is commonly 32 words. Therefore, the entire hardware scale of the proposed

cache will be increased if the size of SRAM macro we use is smaller than 32 words.

In addition, the entire hardware overhead of the proposed cache will also be increased

because the tag memory is divided into 4 -banks or 8 -banks for the proposed cache

with a 32-byte or a 64-byte cache line, respectively.

7.1 RATS-tag memory reduction method

To reduce the hardware scale overhead of the proposed cache while preserving high

performance of the proposed cache, the author proposes a RATS-tag memory reduction

method. The RATS method reduces the entire hardware scale and simplifies the cache

architecture. The main features of the proposed RATS method are as follows:

• The proposed n-way set associative cache adopts the least recently used (LRU)

replacement policy. The LRU replacement policy replaces the aligned tile set

that has not been accessed for the longest time.

• If a line miss occurs, the processor loads an aligned tile set from the lower level

cache or the main memory. An aligned tile set contains eight aligned tiles. Each

tile of an aligned tile set can be stored in the same cache way set.

• If a line hit occurs, the cache updates the LRU bit of the aligned tile set containing

the hit line. If a tile hit occurs, the cache updates the LRU bit of the accessed

aligned tile.

• An enable flag is added to each aligned tile set for parallel access by line and is

set when any tile of an aligned tile set are stored in the same cache way set, the

62

enable flag is set. The line of which enable flag is set can be read out from the

cache if its enable flag is set.

Medium tile Medium tile

Tile

Aligned tile set

Tag0 Tag1

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 7.41: Aligned tile set in each medium tile.

Figure 7.41 shows the relationship between the aligned tile set and each tile. Each

medium tile contains eight aligned tile sets and each aligned tile set contains eight

aligned tiles. All the tiles in an aligned tile set have the same tag value. The number

in the beginning of each line represents the index value of each aligned tile set. If a

cache miss occurs due to the line access, an aligned tile set will be loaded from the

lower level cache or main memory and all the tiles of the aligned tile set are stored

to the same cache way set. Via this method, all sublines of the line are stored in the

same cache way set and it is not necessary to read the tag values from the eight tag

memory banks. Therefore, the number of tag memory banks of the proposed cache

can be reduced to only two. As shown in Figure 7.42, to support unaligned tile access

in the column direction, the tag values in each odd row of the medium tile are stored

in tagbank0 and the tag values in each even row of the medium tile are stored in

tagbank1. The RATS method can simplify the proposed cache architecture.

The miss penalty for line access is 8 times that of the conventional raster line access

since the corresponding aligned tile set has to be loaded to the cache when a cache

miss occurs. Furthermore, the author defines two LRU update modes of RATS-T for

63

Tagbank0 Tagbank1 Tagbank2 Tagbank3 Tagbank4 Tagbank5 Tagbank6 Tagbank7

Tag memory

Tagbank0 Tagbank1 Tagbank2 Tagbank3

Proposed cache with a 32 byte cache line Proposed cache with a 64 byte cache line
Tagbank0 Tagbank1 Tagbank0

Tag memory

Tag memory

Tag memory

Tagbank1

64 word

8 word32 word

64 word 32 word 32 word

Figure 7.42: Two-bank tag memory structure.

tile access and RATS-S for line access. The RATS-T and RATS-S accesses update

the LRU bit of aligned tile set at its constituent tile hit and at its constituent line

hit, respectively. As shown in Figure 7.42, the number of tag memory banks for the

proposed cache is reduced from four/eight to only two. The capacity of each tag bank

is increased to 64 or 32 words for the proposed cache with a 32- or 64-byte cache line,

respectively. These tag memory banks can be easily implemented by SRAM macro.

7.1.1 RATS-T access mode

The author defines the unit tile access as RATS-T access where the cache updates the

LRU bit of the accessed aligned unit tile when a unit tile hit occurs. When a unit tile

miss occurs, the cache loads the corresponding align tile set from main memory and

stores each tile of the align tile set to the cache by using LRU replacement policy.

7.1.2 RATS-S access mode

The author defines the unit line access as RATS-S access where the cache updates LRU

information by the aligned unit tile set when a unit line hit occurs. When a unit line

miss occurs, the cache loads the corresponding align tile set from main memory and

stores each tile of the align tile set to the same cache way set by using LRU replacement

policy.

64

7.2 The proposed RATS-cache architecture

Figure 7.43 shows the proposed RATS-cache architecture. The proposed RATS-cache

adopts two-bank tag memory structure. To support parallel line access, an 8-bit wide

flag bank is added to the proposed RATS-cache. Each bit of the flag bank is added

to each aligned tile set. An enable flag is set when any tile of an aligned tile set are

stored in the same cache way set. Furthermore, the proposed RATS-cache divides data

memory into eight banks to support parallel 8×8 byte-sized tile and 64-byte-sized line

access.

SIMD-based general purpose-oriented data path

Main memory

T1

Address calculation

TLB

I1

Raster scan order address

Address translation

OffsetI0T0

Way0

Way7

Address conversion unit

(4-level Z-order tiling layout)

 RATS-cache memory
(4-level Z-order tiling layout)

Mode

4-level Z-order tiling address

Tag0 Tag1 Data0 Data1 Data7

Tag0 Tag1 Data0 Data1 Data7

DatabankTagbank

Flag

Flag

Figure 7.43: Block diagram of the proposed RATS-cache memory.

65

8 Evaluation

8.1 Hardware scale evaluation

8.1.1 Implementation

Here, the author presents the design of the proposed cache combined with a SIMD-

based general purpose-oriented datapath [41] large-scale integration (LSI) to evaluate

three main specifications: read and write latency, clock period, and hardware scale. The

author compares our proposed cache with a conventional cache because the author is

the first to design an on-chip cache with both tile and line accessibility and combine the

cache with the SIMD-based general purpose-oriented datapath. In addition, the logic

design is performed using the Systemverilog and Design Compiler under educational

0.18 µm complementary metal oxide semiconductor (CMOS) technology in the chip

fabrication program of the VLSI Design and Education Center (VDEC).

The constitutions of the trial design are direct-mapped type with 4 Kbytes capacity,

2-way set associative type with 8 Kbytes capacity or 8-way set associative type with 32

Kbytes capacity. The direct-mapped cache adopts a 2-stage structure composed of the

first address converting stage and the second memory access stage. The data access

latency of the cache becomes 2 cycles due to this 2-stage structure. The proposed

2-way/8-way set associative cache adopts the LRU replacement algorithm. The LRU

algorithm needs to use counters causing hardware cost and delay time increase. In

addition, the 2-way/8-way set associative cache requires an additional stage for way

selection; thus, its latency becomes 3 cycles being equal to that of the L1 data cache

in the recent Intel or ARM processors, as shown in Table 8.9. The clock period of

the Memory Macro the author uses is 3.43 ns and the clock period of the proposed

cache memory is limited to 3.9 ns. Therefore, the evaluation result shows that the

clock period of the proposed cache with the dual data access mode does not increase

compared with that of the conventional cache.

8.1.2 Hardware scale overhead and speed performance evaluation

To show the feasibility of the proposed cache, the author combines the proposed 2-way

set associative cache memory (32-byte cache line) with the SIMD-based datapath [41]

66

and design its LSI chip [19] [20]. The reason using 2-way set associative cache (32-byte

cache line) is that its hardware scale requirement is not huge and the SIMD-based

datapath only provides the 32 byte data transfer function. The LSI chip layout is

designed in a 2.5×5 mm2 area by using 0.18 µm CMOS technology. The details of the

specifications are shown in Table 8.8. Figure 8.44 shows the chip layout.

Table 8.8: Chip specification.

Technology 0.18 µm Clock frequency 250 MHz

Chip size 2.5×5 mm2 Memory Macro net area 2.86 mm2

Aspect ratio 1.0 Datapath logic scale* 124184

Voltage supply 1.8 V Peripheral circuit scale* 23073

*NUMBER OF NAND GATE EQUIVALENTS

The SIMD-based datapath occupies an area of 1.62 mm2, which is 34% of the

total layout area. The proposed 2-way set associative cache memory occupies the

remaining area. The cache memory is composed of 48 SRAM macros for the data and

tag memories, accounting for 46% and 14% of the total layout area, respectively. The

minimum clock period becomes 4 ns due to the 3.9 ns cycle period of the proposed

cache memory shown in Table 8.9 at the logic synthesis level. This minor change in

the cycle period (from 3.9 ns to 4 ns) is caused by the 3.43 ns cycle period of each

Memory Macro based on the educational design grade. In addition, the conventional

n-way set associative cache and the proposed 2-way/8-way set associative cache have

the same clock period.

Table 8.9: Cache speed.

Cache structure Clock period Latency

Conventional n-way set associative cache 3.9 ns 3-cycle

Proposed 2-way/8-way set associative cache 3.9 ns 3-cycle

Proposed Direct-mapped cache 3.9 ns 2-cycle

The hardware area overhead of the proposed cache compared with that of the

conventional cache is shown in Table 8.10. The tag memory of the conventional cache

67

Figure 8.44: Chip layout.

is divided into two banks for unaligned cache line access in the row direction. For

parallel unaligned tile/line access in both column and row directions, the proposed

Non-RATS cache (cache that does not use the RATS method) has an eight memory

banks for parallel tag access, as shown in Figure 6.28. In contrast, the proposed RATS

cache has only two memory banks due to the RATS-T and RATS-S. Table 8.10 and

Table 8.11 show the entire hardware overhead of the proposed cache, respectively.

For example, by assigning only a tag to an aligned tile, the tag array area of the

proposed Non-RATS cache with a 32-byte cache line is reduced from 4 times to 2 times

in comparison to that of the conventional cache memory area. In addition, via the

RATS tag memory reduction method, the proposed RATS cache and the conventional

cache have the same tag memory area. Furthermore, the peripheral circuit scale of

the proposed RATS cache increases to approximately two or three times that of the

conventional cache. As a result, the entire scale of the proposed 8-way set associative

RATS cache with a 32-byte cache line is only 1.05 times that of the conventional cache

scale. The entire scale of the proposed 8-way set associative RATS cache with a 64-

byte cache line is only 1.07 times that of the conventional cache scale. Therefore, our

proposed cache can achieve high-performance with a negligible area cost and no latency

increases to the conventional cache.

8.1.3 Critical path for loading

Figure 8.45 shows the critical path for loading of the proposed 2-way/8-way set as-

sociative cache. The critical path delays are obtained by summation of the following

68

Table 8.10: Hardware scale for the 2-way set associative cache (Number of NAND gate
equivalents).

32-byte cache line, 2-way 64-byte cache line, 2-way

Cache memory Non-RATS RATS Non-RATS RATS

Conventional 10997 10997 17860 17860

Peripheral circuit scale Proposed 23073 23885 35836 35701

P/C 2.10 2.17 2.00 2.00

Conventional 26360 26360 26360 26360

Tag memory scale Proposed 26360×2 26360 26360×4 26360

P/C 2.00 1.00 4.00 1.00

Conventional 169230 169230 338460 338460

Data memory scale Proposed 169230 169230 338460 338460

P/C 1.00 1.00 1.00 1.00

Conventional 206587 206587 382680 382680

Whole cache scale Proposed 245023 219475 479736 400521

P/C 1.18 1.06 1.25 1.04

Table 8.11: Hardware scale for the 8-way set associative cache (Number of NAND gate
equivalents).

32-byte cache line, 8-way 64-byte cache line, 8-way

Cache memory Non-RATS RATS Non-RATS RATS

Conventional 84089 84089 54430 54430

Peripheral circuit scale Proposed 182582 131203 260990 160848

P/C 2.17 1.56 4.79 2.96

Conventional 105440 105440 105440 105440

Tag memory scale Proposed 105440×2 105440 105440×4 105440

P/C 2.00 1.00 4.00 1.00

Conventional 676920 676920 1353840 1353840

Data memory scale Proposed 676920 676920 1353840 1353840

P/C 1.00 1.00 1.00 1.00

Conventional 866449 866449 1513710 1513710

Whole cache scale Proposed 1070382 913563 2036590 1620128

P/C 1.23 1.05 1.34 1.07

69

three times: (1)The time converting the raster scan order address into a 4-level Z-order

tiling address. (2)The access time of the SRAM macro (tag memory and data mem-

ory). (3)The time for selecting data from 2-way/8-way set associative cache and for

providing the result to the processor.

On the first cycle, the address conversion performs tiling address translation and

generates multiple addresses by using bit-order interchange and addition operation.

Each address is send to corresponding cache memory bank for loading tile and line.

Since the address translator consists of multiple adder circuits and single-stage 2 to 1

multiplexers selecting the 4-level Z-order tiling address or the raster scan order address,

it does not increase the access cycle time. In addition, the tile/line way selection for

line access consists of eight single-stage 8 to 1 multiplexers selecting the subline from

the cache, it does not cause a long delay time. The longest delay time is the access time

for tag and data memory access. The minimum clock period of the proposed cache is

suppressed to 3.9 ns.

Data

Tag

Sram

Sram

 Address
conversion

Hit/miss

way selection
Tile/LineMemory

Memory

1 cycle 1cycle 1 cycle

3.9 ns

3 cycle (3.9 ns)

Address
Data

Figure 8.45: Critical path for loading of the proposed 2-way/8-way set associative
cache.

8.2 Performance evaluation

To verify the effectiveness of our proposed cache memory, the author evaluates the

performance of our proposed RATS method for MM and LUD. MM is the most im-

portant and useful operation in image processing and scientific computing. LUD is an

important operation in numerical linear algebra because it is widely used for solving

70

linear systems of equations, computing the determinant of a matrix, or as a building

block of other operations. Listing 5 shows a 5-loop tiled MM program, where arrays A

and C store data in row-major and array B stores data in column-major. In addition,

the author considers that all arrays in the LUD store data in column-major in order to

evaluate the column access performance of our proposed cache. The author uses MM

and LUD as representative examples for 2-D data applications and evaluate the data

access performance of our proposed cache in both row and column directions. For 1-D

data processing, we only need to switch the dual data access mode to 1-D data access

mode. The proposed cache is worked in the same way as a conventional cache and

provides the conventional raster line accessibility. Therefore, we only need to evaluate

the performance of the RATS-T and RATS-S accesses for 2-D data processing.

8.2.1 Execution environment

The author uses a simulator based on the SimpleScalar-3.0 toolkit [42] [43] [44] [45]

for our experiments. For the RATS-T and RATS-S evaluation, the author does not

use SIMD instructions because the SimpleScalar simulator does not support SIMD

instructions. Instead, the author selects double precision corresponding to tile or line

for SIMD parallel processing. In this simulation, the author measures the execution

time (cycles), the number of TLB misses and the number and rate of L1 cache (DL1)

and unified L2 (UL2) cache misses, for various matrix sizes for N, ranging from 128 to

2048. The author compares the proposed cache memory with the 4-level Z-order tiling

layout against two cache memories with the conventional raster layout (row-major

order) and the Z-Morton layout. Furthermore, the author compares the proposed

RATS cache with the proposed Non-RATS cache to verify the effectiveness of our

proposed RATS method. For the RATS cache, if a tile or line miss occurs, the processor

loads an aligned tile set from the lower level cache or the main memory. For the Non-

RATS cache, only the corresponding tile is loaded from the lower level cache or the

main memory on a cache miss to a tile or line read.

The author simulates a common 4-way issue superscalar processor configuration

with a memory hierarchy as shown in Table 8.12. The author sets the size of the DL1

and UL2 caches in accordance to the corresponding sizes of the conventional cache

71

used in a high-performance Intel processor. Note that, the latency of the TLB and

DL1 cache is 1-cycle. The author uses the 5-loop tiled MM kernels, as shown in Listing

5. The code is a 5-loop tiled MM code with ijk order. The tile size is 32×32. Since

MM uses 3 arrays (A, B and C) so that the sum is 3×32×32×8 bytes = 24,576 bytes

< 32 Kbytes, the DL1 cache locality is exploited. The tiled LUD program is one of the

modified versions used by Wolf and Lam [46]. The author revises the processing order

of the LUD program from the row-major order [40] to the column-major order [47]

in order to evaluate the column-directional access performance of our proposed cache.

The author uses a 64×64 tile size because the LUD uses only 1 array, the sum is

64×64×8 bytes = 32,768 bytes = 32 Kbytes. Thus, the tile size is equal to the size of

the DL1 cache. The DL1 cache locality is exploited.

Table 8.12: Processor and memory hierarchy configuration.

Instr.Fetch Queue 4

CPU Instr.Issue 4-way out-of-order

Branch Predictor Bimod, 2 K entry BTB

Data L1 Cache 32 Kbytes, 8-way set associative, 64-byte cache line

Cache Unified L2 cache 256 Kbytes, 8-way set associative, 64-byte cache line

Latency (cycles) L1 hit: 1, L2 hit: 6, Memory: 30

TLB DTLB 64 entry, 4 Kbytes page size, Hit: 1, Miss: 8

Listing 5: The basic tiled MM version (5-loop tiled code).

1 int main()

2 {

3 for(jj = 0; jj < N; jj+=Tile)

4 for(kk = 0; kk < N; kk+=Tile)

5 for(i = 0; i < N; i++)

6 for(j = jj; (j < N && j < jj + Tile); j++)

7 for(k = kk; (k < N && k < kk + Tile); k++)

8 C[i][j]+= A[i][k] * B[k][j];

9 }

72

8.2.2 RATS-T access evaluation

8.2.2.1 Performance of multi-level cache and TLB

Figures 8.46-8.53 show the evaluation results for RATS-T access. The X-axis has

clusters of bars for each matrix size and the Y-axis plots the number of DL1 and UL2

cache misses. The Y-axis uses logarithmic scale. The label “4-level Z-order” means

that the proposed cache does not adopt the RATS method (Non-RATS cache). For

LUD, the raster scan order (row-major LUD) uses the row-major based LUD program

and the raster scan order (column-major LUD) uses the column-major based LUD

program. All three data layouts use the conventional simple tiling code and the author

creates the 2-D matrix in C using malloc() to guarantee that all elements of the matrix

are contiguously allocated in memory.

Figure 8.46: RATS-T access, N×N MM: Number of DL1 cache misses.

Table 8.13: DL1 Cache miss rate for MM.

Matrix size 128 500 512 1000 1024 2000 2048

Raster scan order 4.34% 0.04% 4.36% 0.04% 4.36% 0.04% 4.36%

Morton order 0.14% 0.14% 0.14% 0.14% 0.14% 0.14% 0.14%

4-level Z-order 0.08% 0.08% 0.08% 0.08% 0.08% 0.08% 0.08%

4-level Z-order (RATS-T) 0.09% 0.09% 0.09% 0.09% 0.09% 0.09% 0.09%

Figure 8.46 and 8.47 show the number of the DL1 cache misses for MM and LUD.

73

In Listing 5, the array B[k][j] accesses data in the column direction, that is the loop

k scans different rows of array B[k][j]. The conventional raster layout stores data in

row-major order, spatial reuse cannot be exploited for B[k][j] along the innermost loop

k and conflict misses increase sharply at the power-of-two sized matrix size composed

of row over 4 Kbytes page size. Figure 8.46 and 8.47 show the conflict misses increase

sharply at power-of-two-sized matrix. For MM, the DL1 cache performance of the Z-

Morton order and the 4-level Z-order are little bit inferior to the raster scan order for

matrices whose row directional size, that is, column-directional address stride is non-

power-of-two. In contrast to the Z-Morton order recursively dividing the address space

into multiple 2n-sized tiles, the 4-level Z-order divides the address space into square

tiles of 8 × 8 byte-sized tile, 64 × 64 byte-sized medium tile and 2048 × 2048 byte-

sized large tile, respectively. Therefore, the 4-level Z-order reduces the TLB misses

in the column-directional contiguous access as well as the Z-Morton order although

row directional data access performance may little bit decrease, as compared with the

raster scan order. For LUD, the 4-level Z-order provides the less number of DL1 cache

misses in all cases, as shown in Figure 8.47. The proposed RATS cache only slightly

increases the number of DL1 cache misses because the 4-level Z-order tiling layout can

maximize the utilization of 2-D data locality and minimize the conflict misses. Figure

8.47 shows that the number of DL1 cache misses for the RATS-T access is similar to

the raster scan order (row-major LUD). However, the number of DL1 cache misses

for RATS cache little bit increases because the LUD uses only 1 array and the miss

penalty of the RATS-T access is 8 times of the Non-RATS cache.

Table 8.14: DL1 Cache miss rate for LUD.

Matrix size 128 500 512 1000 1024 2000 2048

Raster scan order∗ 5.60% 0.25% 6.18% 0.31% 6.20% 0.26% 6.21%

Raster scan order∗∗ 0.42% 0.27% 0.45% 0.33% 0.45% 0.30% 0.45%

Morton order 0.20% 0.21% 0.22% 0.22% 0.23% 0.23% 0.23%

4-level Z-order 0.20% 0.21% 0.22% 0.22% 0.23% 0.23% 0.23%

4-level Z-order (RATS-T) 0.36% 0.41% 0.46% 0.46% 0.48% 0.48% 0.48%

∗(column-major LUD), ∗∗(row-major LUD)

74

Figure 8.47: RATS-T access, N×N LUD: Number of DL1 cache misses.

Table 8.13 and 8.14 show the DL1 cache miss rate. For MM, the miss rate increase

of the RATS cache is at most 0.05% (0.05% = 0.09%-0.04%) to the raster scan order,

as shown in Table 8.13. The DL1 cache performance degradation of the 4-level Z-order

is superior to the Z-Morton order at non-power-of-two sized matrix. For LUD, the

maximum increase of the DL1 cache miss rate is only 0.18% (0.18% = 0.48%-0.30% at

matrix size of 2000), as shown in Table 8.14. The overall performance of the MM and

LUD can be improved if the SIMD instructions are used together with the proposed

cache. Because the proposed cache provides parallel tile accessibility as well as parallel

line accessibility and the number of load instructions required for column-directional

contiguous access can be reduced to 1/8 at the maximum, as shown in Section 6.2.4.

In addition, the matrix transposition required in matrix calculation can be eliminated.

Figure 8.48 and 8.49 show the number of UL2 cache misses of the raster scan order

where the 4-level Z-order are almost equal to each other at the non-power-of-two sized

matrix for both MM and LUD. In addition, the proposed RATS cache and Non-RATS

cache achieve almost the same UL2 cache performance as the Z-Morton layout for both

MM and LUD. Figure 8.50 and 8.51 show the number of TLB misses. As expected,

the 4-level Z-order and the Z-Morton order achieve the best performance. Since the

medium tile size of the 4-level Z-order matches the page size, the TLB misses can be

minimized for any matrix size, as shown in Section 3.

75

Figure 8.48: RATS-T access, N×N MM: Number of UL2 cache misses.

Figure 8.49: RATS-T access, N×N LUD: Number of UL2 cache misses.

8.2.2.2 Execution time evaluation

Figures 8.52-8.53 show the overall speedup of each configuration normalized to the

raster scan order configuration for MM and LUD. In all cases, the proposed Non-

RATS cache achieves similar performance to that of the Z-Morton layout. For MM

and LUD, the evaluation results also show that the RATS cache and the Non-RATS

cache provide almost the same matrix computation performance which is not inferior

to that of the conventional cache. For LUD, the proposed RATS cache can provide

almost the same performance to the column-major based LUD program as that to the

76

Figure 8.50: RATS-T access, N×N MM: Number of TLB misses.

Figure 8.51: RATS-T access, N×N LUD: Number of TLB misses.

row-major based LUD program. This means the 4-level Z-order can correspond to

2-D spatial reference locality with little conflict misses regardless of matrix size. Our

proposed cache provides superior access capability in the column direction as well as

in the row direction so that it enables us to select either row- or column-major order

coding without restriction and it is effective to reduce coding effort.

In addition, at the non-power-of-two sized matrix, the Z-Morton order and the

4-level Z-order achieve the similar execution time performance as compared with the

raster scan order although they suffer from little bit higher number of DL1 cache

77

misses, as shown in Figures 8.46-8.47 and Figures 8.52-8.53. This is because their

TLB performance are better than the raster scan order at any matrix size, as shown

in Figure 8.50 and 8.51. Finally, via the RATS method, the overall performance of

the proposed RATS cache is degraded by only 0-1% for MM and by 1-3% for LUD.

Therefore, the proposed RATS cache can provide almost the same access performance

as the non-RATS cache in spite of the minimal entire hardware increase.

Figure 8.52: RATS-T access, overall speedup for MM.

Figure 8.53: RATS-T access, overall speedup for LUD.

78

8.2.3 RATS-S access evaluation

8.2.3.1 Performance of multi-level cache and TLB

In this section, the author presents the evaluation results for RATS-S access. As

shown in Section 5, if the cache line size is 64-byte, the miss penalty of the RATS-

S access is eight times that of the conventional raster line access. Here, the author

modifies the SimpleScalar simulator and evaluate the execution time, the number of

misses for DL1 and UL2 cache memory and TLB.

Figure 8.54: RATS-S access, N×N MM: Number of DL1 cache misses.

Figure 8.55: RATS-S access, N×N LUD: Number of DL1 cache misses.

79

Figures 8.54-8.57 show the number of DL1 and UL2 cache misses for MM and LUD.

The author compares the proposed RATS-S access with the proposed RATS-T access

and the conventional raster line access (tiled). The proposed RATS-S and RATS-T

access provides fewer DL1 and UL2 cache misses at the power-of-two matrix size than

the conventional raster line access. Compared with RATS-S access, the RATS-T access

provides the fewer DL1 cache misses because the sublines of the aligned tile set can be

stored in different cache way set, as shown in Figure 8.54 and 8.55. In Figure 8.55, the

raster scan order achieves better DL1 cache performance using the row-major based

LUD compared with the RATS-S access suffering from eight times miss penalty.

Figure 8.56: RATS-S access, N×N MM: Number of UL2 cache misses.

Figure 8.57: RATS-S access, N×N LUD: Number of UL2 cache misses.

80

As shown in Figure 8.56 and 8.57, the 4-level Z-order and the raster scan order

have the almost the same UL2 cache performance at the non-power-of-two matrix size

as expected. Figure 8.58 and 8.59 show the number of TLB misses. As expected, the

RATS-T and RATS-S access achieve the best performance. Since the medium tile size

of the 4-level Z-order matches the page size, the TLB misses can be minimized for any

matrix size, as shown in Section 3.

Figure 8.58: RATS-S access, N×N MM: Number of TLB misses.

Figure 8.59: RATS-S access, N×N LUD: Number of TLB misses.

81

Figure 8.60: RATS-S access, overall speedup for MM.

Figure 8.61: RATS-S access, overall speedup for LUD.

8.2.3.2 Execution time evaluation

Figures 8.60-8.61 show the evaluation results of the execution time performance

for RATS-S access. The overall speedup of each configuration is normalized to the

raster scan order configuration for both MM and LUD. The author also compares the

RATS-S access and the RATS-T access performance. The overall performance of the

RATS-S access is degraded by only 0-1% for MM and by 0-1% for LUD, as compared

with that of the RATS-T access. For the RATS-S access, if a cache miss occurs in

the line access, an aligned tile set is loaded from the lower level cache or the main

82

memory and each loaded tile of the aligned tile set is stored to the same cache way set.

This cause a little performance degradation. Putting Figures 8.52-8.53 and Figures

8.60-8.61 together shows that the proposed RATS cache is not inferior to the proposed

Non-RATS cache about the execution time. Consequently, these results show that the

proposed RATS cache can provide almost the same performance as compared with that

of the Non-RATS cache although it requires only the minimal additional hardware for

both tile and line accessibility.

8.2.4 Parallel tile/line access evaluation

This section describes how the author implements the tile and line access function in

the SimpleScalar simulator and evaluate its performance in parallel tile and line access.

In addition, because the SimpleScalar does not support SIMD instructions, the author

revises the method of calculating execution cycles for load instructions and evaluate

the effectiveness of the column-directional parallel access.

The MM algorithm is in Listing 5, where the row- and column-directional access are

equal to each other. The author creates a 2-D matrix in C using malloc() to guarantee

that all elements of the matrix are contiguously allocated in the memory space. If the

read address is in the address range of matrix A, line access mode is selected as the

row-directional access to the matrix A access. If the read address is in the address

range of matrix B, the tile access mode is selected as the column-directional access to

the matrix B access data.

8.2.4.1 Evaluation of reduction to load instructions

Section 6.2.4 explains that the number of load instructions required for parallel tile

and line access can be reduced by using SIMD extensions to only one eighth of that

required for conventional raster line access in which SIMD extensions are not used.

This is because only one load instruction can read an 8×8 byte-sized tile or a 64 byte-

sized line from the proposed cache. The author carried out simulations to verify that

the proposed cache can efficiently reduce the load instructions for parallel tile and line

access.

83

Figure 8.62: Number of load instruction reduction.

Only the frequency of reduced load instructions for tile and line access is counted

in the simulation. Parallel load instruction can be used for parallel tile and line access.

For conventional raster line access, parallel load instructions can only be used for

major-directional data access. Therefore, the number of load instructions for column-

directional access is reduced to one eighth of that required for conventional raster line

access (non-major-directional data access). The number of load instruction for line

access is equal to that required for conventional raster line access (major-directional

data access). The results obtained from evaluations are shown in Figure 8.62. In all

cases, the number of load instruction required for parallel tile/line access are reduced

to about one fourth of that required for conventional raster line access. As a result, the

proposed cache with tile and line accessibility can considerably improve the effective

transfer rate of the load instruction.

8.2.4.2 Execution time evaluation

This section describes how the author evaluates the performance improvement in

execution time for parallel tile and line access by using parallel load instructions. The

author calculates the execution time by using the following equation: Execution time

= the number of load instructions × load throughput + the number of DL1 cache

84

misses × DL1 cache miss penalty + the number of UL2 cache misses × UL2 cache

miss penalty. As shown in Table 8.12, the DL1 cache miss penalty is 6 cycles and the

UL2 cache miss penalty is 30 cycles. The author assumes that the load throughput is

1 cycle. The equation to calculate the execution time for conventional load instruction

is in Eq.(1) and that to calculate the execution time for parallel load instruction is

shown in Eq.(2).

The execution time for conventional access = the number of all load instructions× 1

+ the number of DL1 cache misses× 6

+ the number of UL2 cache misses× 30

(1)

The execution time for parallel access = the number of parallel load instructions× 1

+ the number of DL1 cache misses× 6

+ the number of UL2 cache misses× 30

(2)

Table 8.15: The number of DL1 and UL2 cache misses for parallel tile and line access.

Matrix size DL1 cache misses UL2 cache misses

128 30863 4234

500 2100107 942261

512 2714173 1018387

1000 20657849 7965729

1024 22252463 8359164

2000 153340142 66805002

2048 164824433 71158862

The number of DL1 and UL2 cache misses are shown in Table 8.15. The author

evaluates the performance improvement by using the Eq.(3) and parallel load instruc-

tions. The results obtained from evaluations are shown in Table 8.16. Although the

85

parallel load instructions for parallel tile/line access are only one fourth of the conven-

tional load instructions, the performance of the proposed cache is also affected by the

performance of DL1 and UL2 caches. As a result, the execution time of the parallel

load instructions are about one third of that required for conventional load instructions

when the matrix size is ≥ 128.

Performance improvement =
execution time of parallel access

execution time for conventional access
(3)

Table 8.16: Execution time evaluation.

Matrix size Conventional access Parallel access C/P

128 12×105 43×105 3.4

500 10×107 27×107 2.7

512 11×107 29×107 2.6

1000 83×107 21×108 2.6

1024 89×108 23×109 2.6

2000 66×109 17×1010 2.6

2048 72×109 19×1010 2.6

86

9 Conclusion

Ineffective non-major-directional access to the cache memory has become a bottleneck

for efficient 2-D data processing that utilizes extended SIMD instructions. The main

achievement and contribution of my work has been to propose a new cache memory

with tile/line dual accessibility in improving the performance of non-major-directional

cache memory access. The proposed cache provides little TLB miss rate, parallel data

access in both row and column directions and low excessive data transfer for efficient

2-D data processing.

The author has shown that parallel tile access that corresponds to the column-

directional data access can eliminate the transposition required in matrix calculation,

orthogonal transform such as DCT and FFT, 2-D FIR filter and image feature de-

tection. Parallel tile access can also provide efficient 2-D unit block access for image

processing and video coding even though its utilization may require significant modi-

fications to the program code.

Furthermore, the author has proposed a 4-level Z-order tiling data layout and a

Cache-based hybrid Z-ordering layout to improve 2-D reference locality. The author has

shown that the Cache-based hybrid Z-ordering layout can exploit hardware prefetching

well and further improve the performance of Strassen algorithm as compared with the

conventional raster layout and Z-Morton layout. The author also has proposed a

hardware-based address bit-order interchanger to perform address translation. This

address bit-order interchange that corresponds to a 64 Kbytes-wide area eliminates the

address calculation overhead of Morton-index conversion for 2-D data access and allow

the 4-level Z-order tiling layout and the Cache-based hybrid Z-ordering layout to be

accessed as a conventional raster layout.

The author has proposed a method of reducing RATS tag memory that considerably

reduces the entire hardware scale of the proposed cache and simplifies the proposed

cache architecture. After analysis and consideration of the experimental results, the

author has proved that the proposed cache achieves both parallel tile and line accessi-

bility by the minimal overhead hardware increase although its access efficiency can be

outperformed as compared to those previous studies.

Then, the author has combined the proposed Non-RATS cache with a SIMD-based

87

general purpose-oriented datapath and fully implemented it in a 2.5×5 mm2 chip area

to show the feasibility of the proposed cache. Furthermore, by the proposed RATS

tag memory reduction method, the author has shown that the increase rate of the

entire hardware scale of the proposed RATS cache is greatly suppressed to only 5%

and 7% for an 8-way set associative cache with a 32-byte cache line for the former and

a 64-byte cache line for the latter. Under the 3.9 ns clock period, the read latency

of the proposed cache is limited to 3 clock cycles, which is the same as that for the

conventional cache memory of an Intel or ARM high-performance processor.

Finally, the author has modified the SimpleScalar simulator to evaluate the perfor-

mance of the proposed cache and provided the following four important conclusions:

• While providing column-directional parallel access capability, the proposed cache

succeeds to suppress the conflicts miss increase to the power-of-two sized matrix

computation. As a result, it suppresses conflict miss rate increase to only 0.05-

0.18% of that of a conventional cache regardless of matrix size and it enables

almost one cycle load of 8 double precision data in both row and column direc-

tions so that it not only makes matrix transposition unnecessary but also allows

effective utilization of 2-D reference locality by SIMD operations.

• The proposed cache reduces the TLB misses in 2-D processing by only using

conventional simple tiling code. For LUD, the proposed cache can provide almost

the same performance to the column-major based LUD program as that to the

row-major based LUD program. In other words, the proposed cache provides

column-directional parallel access function and does not restrict our freedom in

selecting row-major based or column-major based 2-D program code so that it

increases the degree of coding flexibility.

• The performance of RATS-T and RATS-S accesses is only reduced by 0-1% for

MM and 1-3% for LUD compared with that for the proposed Non-RATS cache.

Therefore, the proposed RATS cache provides a high-performance of the RATS-

T and RATS-S access with the minimal hardware increase to the normal DL1

cache structure.

• In MM, the number of parallel load instruction required for parallel tile and line

88

access is reduced to about one fourth of that required for conventional raster

line access. Since the performance of the proposed cache is also affected by the

performance of DL1 and UL2 caches, the execution time for the parallel load

instruction is about one third of that required for conventional load instruction.

The proposed cache with tile/line accessibility further improves the performance

of 2-D applications by using SIMD instructions.

From the evaluation results, the author finds that the proposed cache provides high-

performance with high feasibility for 1-D/2-D data processing. Therefore, it is desirable

to incorporate the standard function of the conventional cache into the proposed cache.

However, the RATS cache needs a little improvement. If a line miss of the RATS cache

occurs, the processor must load an aligned tile set from the lower level cache or the

main memory and each tile of an aligned tile set must be stored in the same cache

way set. The cache miss rate increases if there is not an optimal tile/line replacement

algorithm because the tile data and line data may be stored in the same cache way set

so that the line access causes frequent cache misses. Therefore, to further reduce the

cache miss rate, it is necessary to develop a new tile/line replacement algorithm that

reduce the number of replacement for line access.

In addition, current processors can use gather/scatter operations to perform non-

contiguous memory access by providing index vector and its base address. However,

conventional gather/scatter operations cause frequent TLB misses due to the raster

layout and data in the multi-bank memory may not be read out in parallel by bank

conflicts. Therefore, to improve the effectiveness of the proposed cache, it is desirable

to also support the gather/scatter function suppressing TLB misses and bank conflict

problems.

89

A Appendix

A.1 Number of cycles required for data loadings

To show that our proposed cache with tile/line accessibility is suitable for efficient video

encoding, the author evaluates the performance of the proposed cache by simulating

the number of cycles of data loadings in our early work [48]. In the experiment,

the proposed cache uses the block-offset mapping method. The measurements are

performed with the four different cache organizations. In the JM Reference Software

(JM11.0), the author has embedded functional simulator of the proposed cache memory

and evaluated its performance in the motion estimation using EPZS method.

Table 1.17: Condition of the simulation.

Item Contents

Image sequence Horse Race (390-420)

(ITE Hi-Vision Test Sequence*) Bronze with credits (260-290)

Image size of input 1920×1056, 30fps

Number of frame 30

Encoder JM Reference Software

Structure of sequence M=2 (IBBP...)

Memory hierarchy Capacity Latency

L1 cache 1 KB-32 KB 1 cycle

L2 cache 256 KB 10 cycle

Main memory No limit 200 cycle
∗ Popular interlace test sequence in Japan.

Table 1.17 shows that the assumed loading latency, data capacity in each memory

and an encode condition in JM Reference Software. For simple analysis, direct-mapped

cache structure is adopted. Figure. 1.63 shows the evaluation results of the HorseRace

sequence. The evaluation results of the Bronze with credits sequence is shown in

Figure 1.64. The author compares the proposed cache with the conventional cache,

the two-bank interleaved cache [2] and the block-offset mapping cache [4]. The two-

bank interleaved cache provides aligned/unaligned cache line accessibility. The block-

90

Figure 1.63: Evaluation results in the HorseRace sequence.

offset mapping cache provides tile accessibility. For any cache capacity, the number of

loading cycles is reduced as compared with another cache memory. In particular, the

performance is significantly improved in the low-capacity cache, but the improvement

degree becomes no small as the cache capacity increase. If the cache capacity is 32 KB,

the number of loading cycles can reduce about 60 to 80%. In addition, the number

of access cycle in the motion estimation is reduced to less than 40 percent of the

current required cycles for a conventional cache memory. This means the memory

access overhead in the motion estimation is significantly reduced.

Figure 1.64: Evaluation results in the Bronze with credits sequence.

91

Acknowledgments

I would like to extend thanks to the many people, who so generously contributed to the

work presented in this thesis. Firstly, I would like to express my special appreciation

and thanks to my advisor professor Dr.Toshio Kondo, you have been a tremendous

mentor for me. It has been an honor to be your last Ph.D student. I would like

to thank you for encouraging my research and for allowing me to grow as a research

scientist. Your advice on both research as well as on my career have been invaluable. I

would also like to thank Dr. Takahiro Sasaki and Dr. Yuki Fukazawa, their constructive

advice has improved my researches, in particular developing the SimpleScalar simulator

and studying the VLSI design flow.

I would also like to thank my committee members, professor Dr.Tetsishi Wak-

abayashi and professor Dr.Yoshikatsu Ohta for serving as my committee members even

at hardship. I also want to thank you for letting my defense be an enjoyable moment,

and for your brilliant comments and suggestions, thanks to you.

I especially thank my parents. Words cannot express how grateful I am to my

mother and my father. My hard-working parents have sacrificed their lives for myself

and provided unconditional love and care. I love them so much, and I would not

have made it this far without them. I would also like to thank all of my friends who

supported me in writing, and incented me to strive towards my goal. At the end I

would like express appreciation to my beloved girlfriend who spent sleepless nights

with and was always my support in the moments when there was no one to answer my

queries. Without her encouragement and understanding it would have been impossible

for me to finish this work.

92

References

[1] H. Chang andW. Sung. Efficient vectorization of SIMD programs with non-aligned

and irregular data access hardware, Proceedings of the International Conference

on Compilers, Architectures and Synthesis for Embedded Systems. New York,

USA, 2008, 167-176.

[2] M. Alvarez, E. Salami, A. Ramirez, and M. Valero. Performance Impact of Un-

aligned Memory Operations in SIMD Extensions for Video Codec Applications,

Proceedings of the International Symposium on Performance Analysis of Systems

& Software, 2007.

[3] J. H Kim, G. H Hyun, and H. J Lee. Cache organization for H.264/AVC motion

compensation, Proceedings of the 13th IEEE International on Embedded Real-

Time Computing Systems and Applications, 2007, 534-541.

[4] Yoon. S, Chae. S. I. Cache optimization for H.264/AVC motion compensation,

IEICE Transactions on Information and Systems 2008, E91-D(12): 2902-2905,

(IEICE).

[5] N. Park, B. Hong and V. K. Prasanna. Tiling, block data layout and memory

hierarchy performance, IEEE Transactions on Parallel and Distributed Systems

2003; 14(7): 640-654.

[6] M. S. Lam, E. E. Rothberg and M. E. Wolf. The cache performance and optimiza-

tions of blocked algorithms, ACM SIGARCH Computer Architecture News 1991;

19(2): 63-74.

[7] N. Park, B. Hong and V. K. Prasanna. Analysis of memory hierarchy performance

of block data layout, Proceedings of the International Conference on Parallel Pro-

cessing, Vancouver, Canada, 2002; 35-44.

[8] S. Chatterjee, A. R. Lebeck, P. K. Patnala and M. Thottethodi. Recursive array

layouts and fast parallel matrix multiplication, Proceedings of the 11th Annual

ACM symposium on Parallel Algorithms and Architectures, Saint Malo, France,

1999; 222-231.

93

[9] J. Thiyagalingam, O. Beckmann and P. Kelly. Minimizing associativity conflicts

in Morton layout, Proceedings of Parallel Processing and Applied Mathematics,

Poznan, Poland, 2006; 1082-1088.

[10] J. Thiyagalingam, O. Beckmann and P. Kelly. Improving the performance of mor-

ton layout by array alignment and loop unrolling, Proceedings of the 16th Inter-

national Workshop on Languages and Compilers for Parallel Computing, College

Station, 2003; 241-257.

[11] C. M. Wittenbrink and A. K. Somani. Cache tiling for high performance mor-

phological image processing, Journal Machine Vision and Applications 1993; 7(1):

12-22.

[12] E. Athanasaki and N. Koziris. Fast indexing for blocked array layouts to reduce

cache misses, International Journal of High Performance Computing and Network-

ing 2005; 3(5): 417-433.

[13] J. Thiyagalingam, O. Beckmann and P. Kelly. Is morton layout competitive for

large two-dimensional arrays yet?, Concurrency and Computation: Practice &

Experience 2006; 18(11): 1509-1539.

[14] E. Athanasaki, N. Koziris. Improving cache locality with blocked array lay-

outs, Proceedings of the 12th Euromicro Conference on Parallel, Distributed and

Network-Based Processing, Spain, 2004; 308-317.

[15] J. Mellor-Crummey, D. Whalley and K. Kennedy. Improving Memory Hierarchy

Performance for Irregular Applications Using Data and Computation Reorderings,

International Journal of Parallel Programming 2001; 29(3): 217-247.

[16] A. Ghane. The effect of reordering multi-dimensional array data on CPU cache

utilization, M.S.thesis, Simon Fraser University, 2013, Canada.

[17] W. Lim and M. Thottethodi. Evaluating ISA support and hardware support for

recursive data layouts, Proceedings of the 14th International Conference of High

Performance Computing, Germany, 2007; 95-106.

94

[18] S. T. Gabriel and D. S. Wise. The opie compiler from row-major source to morton-

ordered matrices, Proceedings of the 3rd Workshop on Memory Performance Is-

sues: in conjunction with the 31st International Symposium on Computer Archi-

tecture, New York, USA, 2004; 136-144.

[19] B. K. Wang, Y. Fukazawa, T. Kondo and T. Sasaki. A Cache Memory with Unit

Tile and Line Accessibility, Proceedings of the 2016 International Conference on

High Performance Computing & Simulation, Innsbruck, Austria, 2016; 866-874.

[20] B. K. Wang, Y. Fukazawa, T. Kondo and T. Sasaki. A Cache Memory with Unit

Tile and Line Accessibility, Proceedings of the 2016 IEEE/ACIS 15th International

Conference on Computer and Information Science, Okayama, Japan, 2016; 121-

126.

[21] X264 FreeH.264 /AVC Encoder [Online], Available:

http://www.videolan.org/developers/x264.html.

[22] X86, x64 Instruction Latency, Memory Latency and CPUID dumps.

http://instlatx64.atw.hu/, accessed July 04, 2013.

[23] M. Kowarschik and C. Wei. An overview of cache optimizaiton techniques and

cache-aware numerical algorithms, In Algorithms for Memory Hierarchies, volume

2625 of LNCS, Springer, 2003; 213-232.

[24] Yuki. T, Renganarayanan. L, Rajopadhye. S, Anderson. C, Eichenberger. A.E,

O’Brien. K. Automatic creation of tile size selection models, Proceedings of the

2010 International Symposium on Code Generation and Optimization (CGO),

2010; 190-199.

[25] Intel 64 and IA-32 Architectures Optimization Reference Manual.

[26] M. Ma, J. Hou, J. Ye, M. Arunachalam, R. Gutierrez. Optimizing non-contiguous

memory access on intel xeon phi coprocessors, Proceedings of the High Perfor-

mance Computing and Communications (HPCC), 2015; 1615-1620.

95

[27] J. J. Dongarra, J. D. Croz, S. Hammarling, I. Duff. A set of level 3 Basic Linear

Algebra Subprograms, ACM Transactions on Mathematical Software, 1990; 1-17.

[28] J. J. Dongarra, J. D. Croz, S. Hammarling, R.J. Hanson. An extended set of FOR-

TRAN Basic Linear Algebra Subprograms, ACM Transactions on Mathematical

Software, 1988; 1-17.

[29] C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh. Basic Linear Algebra

Subprograms for FORTRAN usage, ACM Transactions on Mathematical Software,

1979; 308-323.

[30] D. S. Wise, J. D. Frens, Y. Gu, G. A. Alexander. Language support for Morton-

order matrices, Proceedings of the ACM SIGPLAN Symposium on Principles and

Practices of Parallel Programming, 2001; Snowbird, UT; 24-33.

[31] N. Reissmann, J, C. Meyer and M. Jahre. A Study of Energy and Locality Effects

using Space-filling Curves, Proceedings of the 2014 IEEE International Parallel

& Distributed Processing Symposium Workshops, Orlando, Florida USA, 2014;

815-822.

[32] I. Jonsson, Recursive Blocked Algorithms. Data Structures, and High-Performance

Software for Solving Linear Systems and Matrix Equations, Ph.D. thesis. UMEA

University, 2003, Sweden.

[33] K. P Lorton, D. S. Wise. Analyzing block locality in Morton-order and Morton-

hybrid matrices, Proceedings of the 2006 Workshop on Memory Performance:

Dealing with Applications, Systems and Architectures (MEDEA 06), New York,

USA, 2006, ACM, 512.

[34] P. Gottschling, D. S Wise, A. Joshi. Generic support of algorithmic and structural

recursion for scientific computing, International Journal of Parallel, Emergent and

Distributed Systems, 24(6), 2009; 479-503.

[35] E. Athanasaki. Non-linear memory layout transformations and data prefetching

techniques to exploit locality of references for modern microprocessor architectures

96

with multilayered memory hierarchies, Ph.D. thesis. National Technical University

of Athens, 2006, Greece.

[36] Gaussian Elimination Is Not Optimal, V. Strassen. Numer. Math., 13:354-356,

1969.

[37] F. Desprez and F. Suter. Mixed Parallel Implementation of the Top Level Step

of Strassen and Winograd Matrix Multiplication Algorithms, Proceedings of the

15th Proceedings of the 15th International Parallel and Distributed Processing

Symposium (IPDPS 2001), San Francisco, 2001.

[38] J. Huang, TM. Smith, GM. Henry and RA. van de Geijn. Strassen’s Algorithm

Reloaded, Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis (SC 2016), Salt Lake City, Utah, USA,

2016; 690-701.

[39] D. S. Wise and J. D. Frens. Morton-order matrices deserve compilers’ support.

Technical Report 533, Computer Science Dept, Indiana University, Nov.1999.

[40] S. Y. Jou, S. J. Chang and T. S. Chang. Fast Motion Estimation Algorithm and

Design for Real Time QFHD High Efficiency Video Coding, IEEE Transactions

on Circuits and Systems for Video Technology 2015; 25(9): 1533-1544.

[41] Y. Fukazawa, K. Watanabe, Y. Minoura, T. Kondo and T. Sasaki. SIMD-based

Datapath with Efficient Operation Structure, Proceedings of the 2016 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, Shanghai, China

2016; 1031-1035.

[42] Simple scalar homepage: http://www.simplescalar.com.

[43] E. Athanasaki and N. Koziris. Blocked Array Layouts for Multilevel Memory Hi-

erarchies, Proceedings of the 9th Panhellenic Conference in Informatics, Thessa-

loniki, Greece, 2003; 193-207.

[44] E. Athanasaki and N. Koziris. Fast indexing for blocked array layouts to improve

multi-level cache locality, In Interaction between Compilers and Computer Archi-

tectures, 2004; 109-119.

97

[45] J. P. Michael, M. Penner, and V. K. Prasanna. Optimizing graph algorithms

for improved cache performance. Proceedings of the International Parallel and

Distributed Processing Symposium (IPDPS 2002), Fort Lauderdale, USA, 2002;

769-782.

[46] M. S. Lam, and M. E. Wolf. A data locality optimizing algorithm, Proceedings

of the ACM SIGPLAN 1991 Conference on Programming Language Design and

Implementation, Toronto, Canada, 1991; 30-44.

[47] S. Coleman and K. S. McKinley. Tile size selection using cache organization and

data layout, Proceedings of the ACM SIGPLAN 1995 Conference on Programming

Language Design and Implementation. California, USA, 1995; 279-290.

[48] B. K.Wang, T. Inomata, T. Kondo and T. Sasaki. A Cache Memory with both

Line and Tile Unit Accessibility, Proceedings of the 2013 International Workshop

on Smart Info-Media Systems in Asia, Nagoya, Japan, 2013; 231-234.

98

